Palavras Chaves: Condução Descontínua, Correção do fator de potência, Redução da Distorção Harmônica, Retificador Boost Brigeless Modificado, Técnica de Modulação
Resumo
Tradicionalmente, os retificadores do tipo Boost operando no modo de condução descontínua (MCD) não usam controle de corrente e operam com razão cíclica constante, mas apresentam uma distorção harmônica significativa devido à presença de uma componente de 3ª harmônica. O presente artigo equaciona matematicamente o problema e propõe o uso de uma técnica de modulação que corrige a razão cíclica durante o período da rede e, assim, elimina significativamente a distorção harmônica da corrente, sem adicionar sensores de corrente. A técnica de modulação utilizada já foi apresentada na literatura, no entanto, este artigo demonstra um maior detalhamento matemático da estratégia e propõe uma metodologia para determinar o índice de modulação ótimo. Adicionalmente, propõe-se também uma alternativa para tornar a técnica menos susceptível às variações da tensão de entrada. De modo a validar o estudo teórico, construiu-se um protótipo de 500 W do retificador Boost bridgeless modificado, com tensão eficaz de entrada de 220 V, tensão de saída de 450 V e frequência de comutação de 58,6 kHz. Resultados experimentais apresentaram uma melhoria na distorção harmônica total de 22,17% para 4,88% e no fator de potência de 0,977 para 0,996, ambos em carga nominal.
Title: MODULATION TECHNIQUE FOR REDUCING CURRENT THD APPLIED TO BOOST BRIDGELESS RECTIFIER IN DCM
Keywords: Discontinuous Conduction Mode, Harmonic Distortion Reduction, Modified Bridgeless Boost Rectifier, modulation technique, Power Factor Correction
Abstract
Traditionally, Boost type rectifiers operating in discontinuous conduction mode (DCM) do not use current control and work with constant duty cycle. However, they present a higher harmonic distortion due to the presence of a 3rd harmonic component. The paper mathematically discusses this issue and proposes a modulation technique, which corrects the duty cycle during the grid period. Therefore, it significantly eliminates the harmonic distortion of the current without adding current sensors. The approached modulation technique is already known in literature, however, this paper proposes a greater mathematical detail of the strategy and a methodology to obtain the optimum modulation index. In addition, an alternative for the technique is proposed for it to become less susceptible to input voltage variations. A 500 W prototype with rms input voltage of 220 V, output voltage of 450 V and switching frequency at 58,6 kHz of the modified bridgeless Boost rectifier was built to verify the theoretical study. Experimental results showed an improvement in total harmonic distortion from 22,17% to 4.88% and power factor from 0.977 to 0.996, both at rated power.
[1] K. -. Liu and Y. -. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters,” 20th Annual IEEE Power Electronics Specialists Conference, Milwaukee, WI, USA, 1989, pp. 825-829 vol.2.
doi: 10.1109/PESC.1989.48565
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=48565&isnumber=1811
[2] J. Lazar and S. Cuk, “Open loop control of a unity power factor, discontinuous conduction mode boost rectifier,” Proceedings of INTELEC 95. 17th International Telecommunications Energy Conference, The Hague, Netherlands, 1995, pp. 671-677.
doi: 10.1109/INTLEC.1995.499030
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=499030&isnumber=10697
[3] Huai Wei and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” Proceedings IEEE Southeastcon ’98 ‘Engineering for a New Era’, Orlando, FL, USA, 1998, pp. 348-353.
doi: 10.1109/SECON.1998.673368
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=673368&isnumber=14789
[4] Jingquan Chen, D. Maksimovic and R. Erickson, “A new low-stress buck-boost converter for universal-input PPC applications,” APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181), Anaheim, CA, USA, 2001, pp. 343-349 vol.1.
doi: 10.1109/APEC.2001.911670
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=911670&isnumber=19685
[5] D. S. L. Simonetti, J. Sebastian and J. Uceda, “The discontinuous conduction mode Sepic and Cuk power factor preregulators: analysis and design,” in IEEE Transactions on Industrial Electronics, vol. 44, no. 5, pp. 630-637, Oct. 1997.
doi: 10.1109/41.633459
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=633459&isnumber=13741
[6] A. D. Callegaro, I. Barbi, D. T. da S. Borges, D. C. Martins,”Retificador trifásico isolado modular com correção do fator de potência baseado no conversor zeta operando no modo de condução descontínuo” Eletrônica de Potência, vol. 23, no. 2, pp. 204–215, abr./jun. 2018.
doi: 10.18618/REP.2018.2.2768
URL:https://sobraep.softaliza.com.br/artigo/retificador-trifasico-isolado-modular-com-correcao-do-fator-de-potencia-baseado-no-conversor-zeta-operando-no-modo-de-conducao-descontinuo/
[7] Wanfeng Zhang, Lifei Ruan and Pengsheng Ye, “The design and analysis of power factor pre-regulator based on boost circuit,” Proceedings IPEMC 2000. Third International Power Electronics and Motion Control Conference (IEEE Cat. No.00EX435), Beijing, China, 2000, pp. 706-709 vol.2.
doi: 10.1109/IPEMC.2000.884584
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=884584&isnumber=19127
[8] F. T. Wakabayashi, C. A. Canesin, “Retificador pré-regulador boost com elevados fator de potência e rendimento, para sistemas de telecomunicações” Eletrônica de Potência, vol. 7, no. 1, pp. 71–78, Nov 2002.
doi: 10.18618/REP.2002.1.071078
URL: https://sobraep.softaliza.com.br/artigo/retificador-pre-regulador-boost-com-elevados-fator-de-potencia-e-rendimento-para-sistemas-de-telecomunicacoes/
[9] L. Huber, Y. Jang and M. M. Jovanovic, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” in IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008.
doi: 10.1109/TPEL.2008.921107
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4483680&isnumber=4509502
[10] Y. Lo, J. Lin and S. Ou, “Switching-Frequency Control for Regulated Discontinuous-Conduction-Mode Boost Rectifiers,” in IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 760-768, April 2007.
doi: 10.1109/TIE.2007.892104
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4120227&isnumber=4118385
[11] DaFeng Weng and S. Yuvarajan, “Constant-switching-frequency AC-DC converter using second-harmonic-injected PWM,” Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition – APEC’95, Dallas, TX, USA, 1995, pp. 642-646 vol.2.
doi: 10.1109/APEC.1995.469088
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=469088&isnumber=9885
[12] D. S. Schramm and M. O. Buss, “Mathematical analysis of a new harmonic cancellation technique of the input line current in DICM boost converters,” PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), Fukuoka, 1998, pp. 1337-1343 vol.2.
doi: 10.1109/PESC.1998.703209
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=703209&isnumber=15180
[13] K. Yao, X. Ruan, X. Mao and Z. Ye, “Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter,” in IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1856-1865, May 2011.
doi: 10.1109/TIE.2010.2052538
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5484509&isnumber=5747179
[14] Z. Z. Ye, M. M. Jovanovic and B. T. Irving, “Digital implementation of a unity-power-factor constant-frequency DCM boost converter,” Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., Austin, TX, 2005, pp. 818-824 Vol. 2.
doi: 10.1109/APEC.2005.1453074
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1453074&isnumber=31030
[15] H. S. Athab, “A duty cycle control technique for elimination of line current harmonics in single-stage DCM boost PFC circuit,” TENCON 2008 – 2008 IEEE Region 10 Conference, Hyderabad, 2008, pp. 1-6.
doi: 10.1109/TENCON.2008.4766831
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4766831&isnumber=4766377
[16] R. Redl, “Reducing distortion in boost rectifiers with automatic control,” Proceedings of APEC 97 – Applied Power Electronics Conference, Atlanta, GA, USA, 1997, pp. 74-80 vol.1.
doi: 10.1109/APEC.1997.581436
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=581436&isnumber=12569
[17] A. F. de Souza and I. Barbi, “High power factor rectifier with reduced conduction and commutation losses,” 21st International Telecommunications Energy Conference. INTELEC ’99 (Cat. No.99CH37007), Copenhagen, Denmark, 1999, pp. 158-.
doi: 10.1109/INTLEC.1999.794044
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=794044&isnumber=17154
[18] A. D. Callegaro,”Retificador Trifásico Isolado de Único Estágio com Fator de Potência Unitário Baseado no Conversor Zeta cc-cc Operando no Modo de Condução Descontínuo”, Dissertação de Mestrado,UFSC, Florianópolis, 2013.
[19] H. Luo, J. Xu, Y. Luo and J. Sha, “A Digital Pulse Train Controlled High Power Factor DCM Boost PFC Converter Over a Universal Input Voltage Range,” in IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2814-2824, April 2019.
doi: 10.1109/TIE.2018.2842776
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392517&isnumber=8556518
[20] D. Simonetti, E. Pascual, J. Sebastian and J. Uceda, “A representative small-signal model for the single-phase discontinuous boost PFP [power factor preregulator],” Proceedings of the IECON’97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066), New Orleans, LA, USA, 1997, pp. 862-865 vol.2.
doi: 10.1109/IECON.1997.672028
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=672028&isnumber=14750