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Abstract – This paper presents a comparative study 

between two traditional flux observers and two neural 
flux observers. The neural network topology is a 
standard multilayer perceptron network, and the two on-
line training algorithms are based on Sliding Mode 
Control (SMC) theory. The stator flux neural observers 
present a better performance with respect to rotor 
resistance uncertainties whereas the traditional ones have 
a better response when the uncertainties are with the 
stator resistance. 
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I. INTRODUCTION 
 

It is quite known that the precise magnetic flux estimation 
is crucial for the implementation of the various approaches 
of direct field oriented control for induction motors (IM). 
Several methods for the flux acquisition have been proposed. 
It is usual to classify them as either Flux Estimators or Flux 
Observers [1], [2]. 

Consider a linear multivariable system modeled in the 
State Space as: 
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where, x(t) e  are, respectively, the n-dimensional state 
vector and its derivative, u(t) is the m-dimensional vector of 
the known inputs and ω(t) is the k-dimensional vector of the 
unknown or unavailable inputs, representing the external 
disturbances and the parametric uncertainties. Eq. (2) is the 
measured outputs equation of the system, where y(t) is the p-
dimensional vector of these outputs. A, B, C, D and H are 
matrices of appropriate dimensions considered as known. 

)(tx&

Thus, the estimation process consists in generating state 
x(t) from the known or available input u(t), and from the 
output, y(t), given the matrices A, B, C, D and H. In simple 
words, the estimation is a sort of real time simulation of the 
equations which govern the system dynamics, in order to 
obtain the state variables which, for some reason, are not 

available to measure. It is also true that this simulation is in 
open loop. 

The estimator performance can be ameliorated by using 
both the input, u(t), and the output, y(t) in (1) and (2). 
Therefore, an observer can be obtained by using a predicted 
error correction term in this real time simulation 
(estimation), which is a function of the difference of the 
predicted output, )(ˆ)(ˆ tt xCy = , and the real (measured) one, 
y(t). The observer resulting from this procedure is described 
as: 
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where L represents the gain matrix of the observer, whereas, 
the term within the brackets is the prediction error correction 
term. The prediction error dynamics is obtained by putting 
(3) into (1), as: 
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Notice that when L=0, the observer becomes an estimator. 
The error dynamics is given by the eigenvalues of the matrix 
(A+LC). If this system is observable, by choosing 
appropriately the values of L, the eigenvalues of (A+LC) can 
be arbitrarily chosen, thus imposing arbitrarily the error 
dynamics.  In the presence of uncertainties (w(t)≠0), high 
values of the gains in L, chosen in order to assure a fast 
convergence of the observed error, have also an impact on 
the effect of the disturbances, given that the eigenvalues of 
the matrix (D+LH) are also changed with L. Therefore, there 
is a tradeoff between a fast convergence and a low sensibility 
parameter uncertainties and external disturbances. 

The observer is an estimator in closed loop, using the 
input signals and a feedback signal obtained from the system 
output and the process dynamic model. The prediction error 
correction term allows a faster tracking capability then that 
of the corresponding estimator whose dynamics is dictated 
by the natural dynamics of the system. There are several 
schemes of observers proposed in the literature. In [2], ten 
different topologies of observers are presented, using 
different structures for the correction term. 

The issue of flux observers, robust with respect to 
parameter variation, capable of a fast convergence is still 



lacking some effort of research. In this sense, Artificial 
Neural Networks (ANN) is a valid alternative. By training 
the ANN adequately, using the right inputs, it is possible to 
predict the unavailable variable, the stator flux in our case, in 
a robust way. 

The paper is organized as follows: Section II describes the 
stator flux neural observer whereas Section III presents the 
on-line training algorithms proposed by [3] and the adapted 
algorithm with the simplifications based on [4]. Section IV 
shows a comparison of simulation results between 
conventional observers (Gopinath and Luenberger) and 
neural observers. Finally, Section V presents the 
conclusions. 
 

II. STATOR FLUX NEURAL OBSERVER 
 

The most popular algorithm for training multi-layer ANN 
based on MCP node [5] is back-propagation [6]. The training 
made by adjusting the weights of the ANN through the 
gradient method, aiming at the minimization of the cost 
function (error) of the system. On-line training algorithms 
have to be able to adapt the ANN parameters as a function of 
parameter variations occurred in the plant, thus allowing a 
better modeling of the system. According to [7], on-line 
training algorithms, based on the Sliding Mode Control 
theory [8], present high speed of convergence and 
robustness. 

The induction motor can be modeled in an orthogonal 
reference (α,β-frame), disregarding the homopolar 
component, by the following equation set: 
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where: 

Rs: stator resistance; 
vsα, vsβ: stator voltages referred to the (α,β-frame); 
isα, isβ: stator current (α,β-frame); 
ϕsα, ϕsβ: stator flux (α,β-frame). 
Consider Eqs. (6) and (7) above. The stator flux 

components can be derived using the stator current and 
voltage. The α and β stator current components are used as 
the input to the ANN, having the α and β components of the 
stator flux as the output. The α and β components of the 
voltage are used for the ANN on-line training, as depicted in 
Fig. 1. 

The ANN used has two layers, with 2 inputs, 5 nodes of 
the hidden layer and 2 outputs. The number of nodes of the 
hidden layer was determined by the analysis of the 
simulation results which minimizes the computational 
burden as the number of nodes varies, provided that the flux 
estimation is not compromised. 
 

 
Fig. 1: Block diagram of the neural stator flux observer 

 
Notice that the observer is based one parameter only, the 

stator resistance, which doesn’t vary too much and can be 
easily obtained by simple laboratory tests. 
 

III. TRAINING ALGORITHMS 
 

The development of the algorithms in this section is based 
on the ANN structure shown in Fig. 2, in which: 

n: inputs; 
m: nodes of the hidden layer; 
p: outputs; 
T: input vector with bias; 
YH: output vector of the hidden layer, with bias; 
Y: output vector of the ANN; 
Z: weight matrix which connects the input to the hidden 

layer nodes, with dimension m × (n+1), being Zih the weight 
which connects the input h (n≥h) to the input of the node i 
(m≥i) of the hidden layer; 

W: weight matrix which connects the output to the hidden 
layer nodes, with dimension p × (m+1), being Wih the weight 
which connects the output i (n≥h) to the output of the node j 
of the hidden layer;  

fH(.): activation function of the hidden layer nodes, using 
the tangh function; 

f(.):activation function of the output layer nodes, using the 
tangh function; 

f’H(.): derivative of the activation function of hidden layer 
nodes related to the weights; 

f’(.):derivative of the activation function of output layer 
nodes related to the weights; 

It can be seen from Figure 2 that: 
 

YH  = fH(R)    (8) 
Y = f(V)    (9) 
R = Z.T    (10) 
V = W.T    (11) 

 
where R is the linear output of the hidden layer and V is the 
linear output of the output layer, i.e., 
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Fig. 2: ANN used as a stator flux observer. 

 
The on-line training algorithms for the ANNs based in 

SMC are as follows: 
 
A. Training algorithm according to Parma [3] 

For each new node of the output layer there is a sliding 
surface, defined as: 
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where Ydj is the j-th desired output for the output layer for j = 
1,2,...,p. 

For each node of the hidden layer, the following sliding 
surface is defined: 
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Consider Eqs. (15) and (18). The following rules for the 

updates of the weights are defined: 

Hijjji YXSsignW 1)(.α=
•

   (20) 

hHiHiih TXSsignZ 1)(.β=
•

   (21) 
Once the sliding surface is defined, it is necessary to 

determine the limits for gains α and β such that the existence 

of sliding modes is guarantied. Therefore, the following 
conditions have to be assured: 

• Th (h=1,...,n) and Ydj (j=1,...,p) are bounded with 
bounded derivatives; 

• fH(.) and f(.) are bounded with bounded time 
derivatives. 

According to [8], the existence of sliding modes is assured 
when , being  the time derivative of S. The 
deduction of the bounds on α and β are shown in [3]. In 
order to make the sliding on the surface smoother, the 
following gains were used: α=β=1e

0. ≤SS & S&

5. With such values, 
chattering problems are avoided. 
 
B. Adapted algorithm 

Martens and Weymaere present in [4] an equalized error 
backpropagation algorithm for the on-line training of 
multilayer perceprons. The training is done by adjusting the 
output of the ANN by the gradient method, aiming at 
minimizing the cost function (of error) of the system output. 
This proposition is summarized by the following equation: 
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Considering Eq. (22), Eqs. (15) and (18) can be written 

as: 
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The rest of the equations derived in [3] remain the same in 

this approach. As for the bounds for α and β, the same 
values were adopted, i.e, α=β=1.e5. 
 

IV. SIMULATION RESULTS 
 

A program written in C was developed in order to 
compare the stator/rotor flux average percentage error of the 
two algorithms presented in the previous section with the 
two conventional Gopinath and Luenberger observers.  

The conventional observers use the DUFOR (Direct 
Universal Field Oriented Rotor) as a controller for the 
simulation and implementation whereas the neural observers 
use the UFOVS (Universal Field Oriented Stator). It is noted 
that no special care was taken when selecting the control 
gains. The main concern being the observers performance. 
The numeric integration of the model differential equations 
is performed using a forth-order Runge-Kutta method. 
 

 
 



(a)      (b) 

(c)      (d) 
Fig. 3: Gopinath’s simulation results with 20% increase of the rotor resistance: (a) Rotor flux and rotor flux error during motor start/speed reversion at 150 
elec.rad/sec. (b) Rotor flux and rotor flux error during application/rejection of load at 150 elec.rad/sec. (c) Rotor flux and rotor flux error during start/speed 

reversion at 30 elec.rad/sec. (d) Rotor flux and rotor flux error during application/rejection of load at 30 elec.rad/sec. 
 

The induction motor model parameters are presented in 
Table I, whereas the simulation parameters are shown in 
Table II. 

In these simulations, the induction motor was submitted 
to the following transients: 

• motor start and speed reversion (with no load); 
• application and rejection of load. 
The above transients are done under the following 

conditions of parametric uncertainty and speed: 
• 20% increase of the stator resistance with motor 

speed of 150 elec.rad/sec; 
• 20% increase of the rotor resistance with motor 

speed of 30 elec.rad/sec. 
The weights of the ANN are initialized when starting 

the motor through a sampling of normal distribution with 
zero mean. After starting, the weights are updated with the 
output values obtained at the last simulation step. 

Some simulation results are shown in Figs. 3 and 4. 
Figure 3 shows the transients of the Gopinath’s algorithm 
with 20% increase of the rotor resistance. Figure 4 shows 

the transients of the Adapted algorithm with 20% increase 
of de stator resistance. 

Those figures show the worst case for both observers: 
Gopinath and Adapted. These worst cases correspondent 
to: rotor resistance uncertainty for Gopinath, and stator 
resistance uncertainty for Adapted. It can be seen that the 
Adapted neural observer presents smaller flux error then 
that obtained by Gopinath observer for rotor resistance 
variation. The opposite happens when the stator resistance 
varies. Nevertheless, the Adapted neural observer is less 
sensitive for variations in stator resistance variation then 
Gopinath is sensitive to rotor resistance drift. This can be 
verified observing the results of Tables III and IV which 
synthesize the results obtained by simulation.  

The dynamic behavior of both torque and speed follow 
those of the flux, given that the motor currents are 
measured. Notice also that both neural observers present 
similar results. Nevertheless, the adapted algorithm 
approach has the advantage of being simpler and less time 
consuming. 
 
 



(a)      (b) 

(c)      (d) 
Fig. 4: Adapted algorithm’s simulation results with 20% increase of the stator resistance: (a) Stator flux and stator flux error during motor start/speed reversion 

at 150 elec.rad/sec. (b) Stator flux and stator flux error during application/rejection of load at 150 elec.rad/sec. (c) Stator flux and stator flux error during 
start/speed reversion at 30 elec.rad/sec. (d) Stator flux and stator flux error during application/rejection of load at 30 elec.rad/sec. 

 
 

TABLE I 
Induction Motor parameters 

Power (HP) 2 
Rated phase voltage (V) 220 
Speed (rpm) 1720 
Stator resistance (Ω) 4.08 
Rotor resistance (Ω) 4.87 
Stator leakage Inductance (H) 0.3154 
Rotor leakage Inductance (H) 0.3235 
Magnetizing inductance (H) 0.305 
Rotational loss coefficient (W.s2/rad2) 0.018 

 
 
 
 
 
 
 
 
 

 
TABLE II 

Parameters used for the simulation 
Integration step (µs) 1 
Simulation time (s) 31 e 52 

Sampling frequency (kHz) 4 
Voltage at the DC link (V) 300 
Load used for the transients (Nm) 4 
Reference speed of the motor (elec.rad/s) 150 
Reference flux (Wb) of neural observers 0.53 
Reference flux (Wb) of conventional 
observers 

0.50 

1 Simulation time for starting and speed reversion. 
2 Simulation time for loading/unloading the motor. 
 
 
 
 
 
 
 



 
TABLE III 

Flux average percentage error with 20% increase of 
the stator resistance 

 Start/speed reversion Application/rejection 
of load 

 wr = 150 
elec.rad/s 

wr = 30 
elec.rad/s 

wr = 150 
elec.rad/s 

wr = 30 
elec.rad/s

Gopinath 0.02 0.09 0.36 0.07 
Luenberger with 
vs3 0.02 0.09 0.37 0.07 
Parma 0.9 0.91 0.67 1.79 
Adapted 0.9 0.91 0.69 1.79 

3 In this observer the estimator is based on the current 
model whereas the correction term is derived from the 
voltage model. 
 

TABLE IV 
Flux average percentage error with 20% increase of 

the rotor resistance 
 Start/speed reversion Application/rejection 

of load 
 wr = 150 

elec.rad/s 
wr = 30 

elec.rad/s 
wr = 150 
elec.rad/s 

wr = 30 
elec.rad/s

Gopinath 2.18 0.51 3.6 2.92 
Luenberger with vs 2.18 0.5 3.6 2.92 
Parma 0.03 0.0 0.03 0.0 
Adapted 0.01 0.0 0.01 0.0 

 
V. CONCLUSIONS 

 
A new neural network based observer for the stator flux 

of induction motor has been presented. Simulation results 
of this adapted algorithm and of the former one proposed 
by Parma et al. [3] have been shown. 

It can be seen that the much simpler adapted algorithm 
proposed has the same good performance as the original 
one. Nevertheless, the adapted algorithm approach has the 
advantage of being simpler and less time consuming. 

The neural network based observers are compared with 
traditional Gopinath and Luenberger observers. It can be 
verified from simulation results that the neural observers 
of the stator flux present a flux average percentage error 
(considering both case – 20% increase of rotor and stator 
resistance) which is smaller than those for the traditional 
observers. 

Finally, one notes that: 
1) The neural observers are depended on one electrical 

parameter only (these observers are insensitive to rotor 
resistance variations), the stator resistance, which doesn’t 
vary too much and can be easily obtained by simple 
laboratory tests. The traditional observers are depended on 
two parameters: rotor and stator resistance; 

2) The neural observers’ algorithms do not depend on 
the motor speed measurement, which is a great advantage 
nowadays, considering the industrial induction motor 
drives trend. 
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