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Abstract— This paper addresses the problem of robust
state feedback control of uncertain discrete-time systems in
polytopic domains. The closed-loop poles are assigned into
a circle with center at the origin of the complex plane and
radius as small as possible, providing a transient response
that tends to a deadbeat response. The proposed design is
based on quadratic Lyapunov functions and is implemented
through linear matrix inequalities. The resulting controller
can stabilize and guarantee robust performance for this class
of systems when conventional deadbeat control techniques
fail, as shown through numerical examples.
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I. INTRODUCTION

One important issue for discrete-time systems is the
deadbeat control, that is, to drive any state to the zero in a
finite number of steps through constant feedback control
[1]. A classical approach to achieve deadbeat response
for discrete-time linear systems is to assign all the poles
of the closed-loop system at zero using conventional
pole location techniques, as for instance the Ackermann’s
formula. In the case of multiinput systems, the state feed-
back gain is in general nonunique and some approaches
give parameterized solutions for these gains [2], [3]. The
problems of deadbeat regulation and tracking have been
studied in several contexts, as in [4], where the deadbeat
controller imposes prespecified bounds of overshoot and
undershoot for the closed-loop system. In [5], necessary
and sufficient conditions for deadbeat regulation and track-
ing in MIMO systems are given. Practical applications
of deadbeat tracking schemes where the reference signal
is a sinusoidal wave have been given for uninterruptible
power supplies systems in [6], [7]. One common point
among the prior mentioned studies and many others in
the literature is that they do not take uncertainties in
the system representation into account neither consider
that the system can be affected by perturbations or can
have unmodeled dynamics. Thus, a controller designed to
provide a deadbeat response for the nominal system can
lead to a poor closed-loop performance (even to unstable
behaviors) when uncertainties are present.

The problem of synthesis of state feedback gains which
provide robustness against perturbations for deadbeat reg-
ulators has been addressed in [8] by means of an uncon-
strained optimization problem. In [9] a design method for
robust deadbeat controllers applied to systems with time-
varying norm-bounded unstructured uncertainty is given in
the frequency domain. A convex approach to determine a
robust deadbeat controller that minimizes the norm of the
closed-loop matrix to reduce the effect of unstructured
uncertainties is presented in [10]. Although the above
tests provide a certain degree of robustness for the system
against perturbations and unstructured uncertainties, they
do not deal with the presence of structured uncertainties in
the system. This arises quite frequently in practice when
the discrete-time linear system has parameters that are un-
certain, which can be modeled through linear parameter-
varying representations [11].

Lyapunov functions have been used to derive analysis
and synthesis conditions for several classes of dynamic
systems, including uncertain linear systems belonging to
polytopic domains or that admit an affine representation
(structured uncertainties). The use of a common Lyapunov
matrix to assure the stability of the entire uncertain
domain, called quadratic condition, has provided many
important results in robust stability, control and filtering
[12], [13], [14], [15]. This condition is appealing thanks
to the low numerical complexity and because the tests
derived are frequently expressed in terms of linear matrix
inequalities (LMIs), providing to the problems polynomial
time solutions (see [16], [17] for details on LMIs). In
[18], it is shown that the feasibility of an LMI condition
based on a quadratic Lyapunov function assures that all
the eigenvalues of a precisely known matrix lie inside a
circle on the complex plane with given center and radius.
This condition has been recently extended for the case
of uncertain systems in polytopic domains [19] where
the problems of robust stability and control with pole
location constraints have been studied through quadratic
and parameter dependent Lyapunov functions. Notice that
in the case of discrete-time uncertain systems, when the
circle is centered at zero and the radius is as small as
possible, the response of the system approaches to the

8th Brazilian Power Electronics Conference - COBEP 2005

162



deadbeat response.
The main objective of this paper is to present a design of

a robust state feedback control that guarantees that all the
poles of an uncertain discrete-time linear system lie inside
a circle with center at zero and radius as small as possible,
providing to the system an almost deadbeat response. The
results here are derived for linear systems with polytopic
uncertainties but can be directly applied to systems with
an affine representation or for switched linear systems
with arbitrary switching functions. The design is based
on the quadratic Lyapunov function and expressed as an
LMI test, easily implemented and solved through available
softwares. Numerical examples show that the proposed
condition can stabilize and guarantee robust performances
for the class of systems under investigation in cases where
conventional deadbeat techniques fail.

II. PRELIMINARIES

Consider the system

x(k + 1) = Ax(k) + Bu(k) (1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the
control vector and A ∈ R

n×n, B ∈ R
n×m are the system

matrices, supposed to be precisely known. Suppose that
the state feedback control law

u(k) = Kx(x) (2)

with K ∈ R
m×n, is applied to system (1). If the system

is controllable, it is possible to determine K such that the
eigenvalues of the closed-loop system are equal to zero,
that is,

λi(A + BK) = 0 , i = 1, . . . , n (3)

thus providing a deadbeat response to the states system.
Consider now that the system is given by

x(k + 1) = A(α)x(k) + B(α)u(k) (4)

where x(k) ∈ R
n, u(k) ∈ R

m, and A(α) ∈ R
n×n,

B(α) ∈ R
n×m are not precisely known, but uncertain

matrices, that belong to the polytopic domain

D =
{

(A,B)(α) : (A,B)(α) =

N
∑

j=1

αj(A,B)j ,

N
∑

j=1

αj = 1 , αj ≥ 0, j = 1, . . . , N
}

(5)

First of all, notice that it is very difficult (usually
impossible) to determine a control gain K such that
λi(A(α) + B(α)K) = 0, i = 1, . . . , n. The design of
such gain for a particular pair (A,B)(αn) ∈ D, where
αn can represent the nominal system, does not guarantee
that all the pairs (A,B)(α) ∈ D will have a deadbeat
response. It is not uncommon that the uncertain system

becomes unstable for a deadbeat gain designed for the
nominal system.

It is worth to recall that the polytopic representation
(5) describes the system subject to time-invariant or slow
time-varying parameters [20], [21]. It can be also used
to represent a system that originally is in the affine
form, which is a very common representation of physical
processes, and even can describe switched linear system
when the subsystems are the vertices (A,B)j of the
polytope D (see [22] for details).

The control problem stated here is: determine, if possi-
ble, a control gain K for the state feedback law (2) such
that the eigenvalues of the closed-loop system belong to
a circle with center at zero and with radius as small as
possible inside the unit circle, that is,

λi(A(α) + B(α)K) ∈ Cr , i = 1, . . . , n (6)

with Cr depicted in Figure 1.
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Fig. 1. Circle for pole location to provide an almost deadbeat response:
center at zero and radius r as small as possible, denoted by Cr .

Conditions for pole location in different regions given
in terms of LMIs can be found in the literature (see, for
instance, [23], [18]). In the next section, a condition for
pole location in the circle Cr will be given.

III. DESIGN CONDITION

Theorem 1 If there exists a symmetric positive definite
matrix W ∈ R

n×n and a matrix Z ∈ R
m×n such that

[

rW AjW + BjZ
WA′

j + Z ′B′

j rW

]

> 0 , j = 1, . . . , N

(7)
has a solution for a given 0 < r ≤ 1, then the state
feedback control law (2) with gain

K = ZW−1 (8)

stabilizes the system (4)-(5) and guarantees the pole
location constraint (6).
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Proof Multiplying (7) by αj and applying the sum oper-
ator

∑N
j=1 to the resulting expression, one has

[

rW A(α)W + B(α)Z
WA(α)′ + Z ′B(α)′ rW

]

> 0 (9)

Using the variables transformation Z = KW from (8),
it is possible to write

[

rW (A(α) + B(α)K)W
W (A(α) + B(α)K)′ rW

]

> 0

(10)
and applying Schur complement to (10), one can find

(A(α) + B(α)K)

r
W

(A(α) + B(α)K)′

r
− W < 0 (11)

The feasibility of (7) is a necessary and sufficient
condition to guarantee the feasibility of (11), thanks to the
convexity of the problem. Denoting the unit circle in Fig-
ure 1 as C1, the existence of a solution to (11) is sufficient
to assure that all the eigenvalues λi

(

A(α)+B(α)K
r

)

∈ C1

which is equivalent to say that λi

(

A(α)+B(α)K)
)

∈ Cr,
i = 1, . . . , n. ¤

Theorem 1 deserves some remarks:
R1) Condition (7) is a test with N LMIs written at

the vertices of polytope D, whose feasibility allows to
determine a robust control gain that solves problem (6).
Notice that the problem data are the vertices Aj , Bj , j =
1, . . . , N , that describe the uncertain system model. The
design parameter is the scalar r, chosen in the interval
0 < r ≤ 1 and the problem variables are the matrices W
and Z. These matrices can be automatically determined
(in polynomial time) using standard LMI solvers, as the
LMI Control Toolbox of Matlab [17].

R2) The existence of a fixed fixed gain K, from Theo-
rem 1, guarantees that all the matrices A(α)+B(α)K will
have the eigenvalues inside the circle Cr, which assures a
robust performance for the closed-loop uncertain system,
measured in terms of overshoot and settling times that can
be viewed as a function of the radius r.

R3) As Theorem 1 relies on the quadratic condition,
it can be directly applied to the class of the discrete-
time switched linear systems, that change arbitrarily fast
from one vertex (A,B)j to another vertex (A,B)k, j, k =
1, . . . , N , j 6= k following arbitrary switching rules. In
this case, Theorem 1 assures that all the eigenvalues of
each one ofthe subsystems (A,B)j , j = 1, . . . , N of
the switched system lie inside the circle Cr and that the
system is stable for any arbitrary switching rule, since the
feasibility of the pole location condition (7) implies in
the feasibility of the quadratic stability condition (A(α)+
B(α)K)W (A(α) + B(α)K)′ − W < 0, since, for 0 <

r ≤ 1,
(

A(α) + B(α)K
)

W
(

A(α) + B(α)K
)

′

− W <
(

A(α) + B(α)K
)

W
(

A(α) + B(α)K
)

′

− r2W < 0

(12)

R4) Theorem 1 can be used to determine a stabilizing
gain for uncertain systems in the form (4)-(5) that have ar-
bitrarily time-varying parameters. In this case, the concept
of eigenvalue is not applicable to the system anymore, and
one must evaluate the feasibility of Theorem 1 for r = 1
to determine the stabilizing gain.

R5) As the condition (7) is expressed in terms of LMIs,
it is easy to incorporate constraints in the matrices W
and Z to deal with structural constrained control or static
output feedback control (see [19]) for details.

R6) Recently, conditions of pole location in circular
regions based on quadratic or on parameter dependent
Lyapunov functions or switched Lyapunov functions have
been given [19], [24], [25], [26]. It was shown that param-
eter dependent Lyapunov functions or switched Lyapunov
functions can produce more stringent design specifications
than quadratic Lyapunov functions at the price of using
gain-scheduled or switching control techniques.

In next section, some numerical examples are presented
to illustrate how the proposed condition can improve the
performance of this class of dynamic systems.

IV. NUMERICAL EXAMPLES

The first example shows how a state feedback deadbeat
controller designed for a nominal system can lead to
an unstable behavior in the presence of uncertainties.
Consider the system

x(k + 1) = (A0 + θAθ)x(k) + B0u(k) (13)

where the matrices of the nominal system (randomly
generated) are

A0 =









0.33 0.19 0.56 0.30
0.14 0.66 0.93 0.50
0.64 0.45 0.98 0.40
0.78 0.75 0.17 0.67









; B0 =









0.49 0.87
0.07 0.66
0.46 0.96
0.32 0.15









(14)
and the matrix related with the uncertain parameter θ is

Aθ =









0 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0









(15)

For instance, using the function PLACE from the Con-
trol System Toolbox of Matlab, it is possible to determine
a gain Kdb to place the poles of the nominal system at
0.001, 0.0001, 0.0002, 0.0003, that is, max | λi(A0 +
B0Kdb) |≤ 0.001, i = 1, . . . , 4. Observe that this pole
location assures a response which is very close to the ideal
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deadbeat response for the nominal system. The control
gain is given by

Kdb =

[

41.5958 87.7447 32.4128 66.9894
−20.1237 −41.8722 −16.2024 −32.0757

]

(16)
However, the system performance can be deteriorated if

a small perturbation around the nominal operation point
occurs. Consider that the uncertain parameter θ is such
that

0 ≤ θ ≤ 0.1 (17)

The eigenvalues of the uncertain closed-loop system x(k+
1) = ((A0 + θAθ) + B0Kdb)x(k) are shown in Figure 2.
Observe that the uncertain closed-loop system is unstable,

−1 −0.5 0 0.5 1
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−0.5

0

0.5

1

PSfrag replacements
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Fig. 2. Eigenvalues of the uncertain closed-loop system with the
deadbeat controller designed for the nominal system, that is, λi((A0 +
θAθ) + B0Kdb), i = 1, . . . , 4, with (14)-(17).

since not all the eigenvalues lie inside the unit circle.
To illustrate the performance degradation of the closed-

loop uncertain system, Figure 3 shows a time simulation of
the closed-loop system subject to δ(k), an impulse input,
described by

x(k + 1) = ((A0 + θAθ) + B0Kdb)x(k) + Bδδ(k)
y(k) = Cx(k)

(18)
with B′

δ = [0 0 0 1] and C = [1 0 0 0].
Notice that the system presents a deadbeat response

for the nominal condition, represented by the curve with
θ = 0 in Figure 3, as expected, but the performance
is deteriorated as the uncertain parameter θ increases,
leading to the instability for θ = 0.1.

Theorem 1 can cope with the uncertainty, allowing to
improve the performance of this system. Observe that this
system with one uncertain parameter can be represented
by an N = 2 vertices polytope: A1 = A0, B1 = B0

(vertex 1) and A2 = A0 + 0.1Aθ, B2 = B0 (vertex 2).
Choosing r = 0.1, Theorem 1 gives as solution the robust
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Fig. 3. Impulse response of the uncertain closed-loop system with the
deadbeat controller designed for the nominal system, that is, λi((A0 +
θAθ) + B0Kdb), i = 1, . . . , 4, with (14)-(17).

state feedback gain

KL1 =

[

−0.9563 1.2449 1.2380 0.4676
−0.2777 −1.5611 −1.6628 −1.0624

]

(19)
The uncertain closed-loop system x(k + 1) = ((A0 +

θAθ) + B0KL1)x(k) has the eigenvalues shown in Fig-
ure 4.
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Fig. 4. Eigenvalues of the uncertain closed-loop system with the robust
controller designed through Theorem 1, λi((A0 + θAθ) + B0KL1),
i = 1, . . . , 4, with (14), (15), (17), (19).

Observe that this system is stable. Moreover, all the
eigenvalues are located inside the circle with center at zero
and radius r = 0.1, guaranteed by the robust gain deter-
mined through Theorem 1. There is an apparent difference
in the root locus of Figure 4 (robust almost deadbeat
design) and the one of Figure 2 (conventional deadbeat
design based on the nominal model). This difference can
be viewed also in the time simulation of the system subject
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to the impulse input, as in (18), but with the robust state
feedback gain (19), shown in Figure 5.
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Fig. 5. Impulse response of the uncertain closed-loop system with the
robust controller designed through Theorem 1, that is, λi((A0+θAθ)+
B0KL1), i = 1, . . . , 4, with (14), (15), (17), (19).

This example shows another interesting feature of The-
orem 1. Consider the uncertain parameter 0 ≤ θ ≤ θ̄.
The relationship between the minimum radium rmin for
which Theorem 1 remains as a function of θ̄ is shown
in Figure 6. Notice that as θ̄ increases, rmin increases
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Fig. 6. Relationship between the minimum radius rmin for which
Theorem 1 is feasible and the upper bound on the uncertain parameter
θ̄, for the system (13)-(15).

indicating that for this example, it is necessary to make
the pole location constraints less stringent in Theorem 1
to cope with larger interval uncertainty.

The second example aims on the structural constrained
control problem. Suppose the system (4)-(5) with two
randomly generated vertices given by

A1 =





0.0860 0.5029 0.3034
0.9012 0.7865 0.7636
0.8092 0.8762 0.7448



 ; B1 =





0.4630
0.9490
0.8430





(20)

A2 =





0.3596 0.9895 0.3580
0.0167 0.9317 0.1752
0.2674 0.3962 0.3943



 ; B2 =





0.8190
0.7350
0.7050





(21)
The objective here is to determine the minimum radius
for which Theorem 1 has a solution when only the states
x2(k) and x3(k) are available for feedback, which leads
to a structured constrained gain given by KC = [0 k2 k3].
Applying constraints on the structure of the matrices
Z and W , one has that Theorem 1 is feasible for the
minimum radius r = 0.41, with the solution

KC =
[

0 −1.1382 −0.5127
]

(22)

ZC =
[

0 −10.7755 −13.7783
]

WC =





0.6199 0 0
0 6.3584 6.9004
0 6.9004 11.5536



 (23)

If the full state information was available for the con-
troller, the minimum radius could be reduced to r = 0.29,
with the control gain given by

K =
[

−0.3903 −1.1291 −0.5564
]

(24)

The third example deals with a more numerically
complex design problem: the discrete-time state feedback
control of an electrical circuit, the RLC circuit shown in
Figure 7.

PSfrag replacements
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CvC(t)

iL(t)

u(t)

Fig. 7. Circuit with uncertain R, L and C parameters subject to a state
feedback control law.

This circuit is largely used as the final stage of static
power converters (DC-DC or DC-AC). It can be modeled
by

ẋ(t) = Ax(t) + Bu(t) (25)

with x(t)′ = [vC(t) iL(t)], where vC(t) is the capacitor
voltage and iL(t) is the inductor current, and

A =

[

−1/RC 1/C
−1/L 0

]

; B =

[

0
1/L

]

(26)

8th Brazilian Power Electronics Conference - COBEP 2005

166



Suppose that the parameters R, L and C are uncertain,
lying in the intervals

0.1Rn ≤ R ≤ 1.9Rn ,

0.9Ln ≤ L ≤ 1.1Ln , 0.9Cn ≤ C ≤ 1.1Cn (27)

with the nominal values Rn = 12Ω, L = 1.3mH ,
Cn = 25µF are borrowed from [27]. Observe that the
uncertainty in L and C represents deviations of 10%
from their respective nominal values, while for R, the
uncertainty represents 90% of deviation.

A discrete-time model for this system can be obtained
using the zero-order hold method, with a sampling period
Ts = 1/10800, as in [27]. A grid in the space of the
three uncertain parameters R, L and C, leads to a N =
26 = 64 vertices polytope, since the system matrices in
the discrete-time model

Ad =

[

ad11 ad12

ad21 ad22

]

, Bd =

[

bd11

bd21

]

(28)

have six uncertain parameters.
This example is numerically more complex than the

prior ones, but Theorem 1 can still determine a robust
controller for the system, with a control gain

K =
[

−0.2865 −11.2201
]

(29)

that guarantees the pole location inside a circle with radius
r = 0.84, as shows Figure 8.
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Fig. 8. Eigenvalues of the uncertain closed-loop RLC circuit system
with the robust controller designed through Theorem 1 (29). All the
eigenvalues, marked by dots, lie inside the circle with r = 0.84.

It is worth to mention that for this application, the load
parameter R can be time-varying even exhibiting fast time
variations, as in the case of switched loads. Recalling
remark R4, Theorem 1 can be used to determine a
stabilizing control for system (26) subject to any arbitrary
time-variation of the uncertain parameters in (27). By
choosing r = 1, one has that a stabilizing gain is given
by

K =
[

−0.5949 −12.2544
]

(30)

V. CONCLUSION

This paper presents a sufficient LMI condition to deter-
mine a robust state feedback controller with pole location
constraints, suitable to design a controller that can provide
to the closed-loop uncertain discrete-time system an al-
most deadbeat response. The approach can also be applied
to determine stabilizing controllers in the case when the
system parameters can vary arbitrarily. Numerical exam-
ples illustrate how the proposed condition can improve
the results for the class of systems under investigation,
providing robust performance when conventional deadbeat
techniques can lead the system to instability. Also, struc-
tural constraints are shown to be easily incorporated to
the given condition, that can be applied in the control of
more complex systems indicating its potential as a design
tool for control systems engineering with applicability on
power electronics. As perspectives of future work, one
can cite the use of the technique proposed in the paper to
design control gains for practical applications.
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