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Abstract — This paper describes the modeling and
control of a buck converter with variable input voltage.
Some DC-DC converters for photovoltaic applications
require that the input voltage be controlled while the
output voltage is constant. This control is not so obvious
and requires converter modeling and regulator design.
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I. INTRODUCTION

Modeling and control of buck converters are two topics
well known in the literature, which rise no challenges for
researchers and engineers. However when the buck converter
is used in photovoltaic applications the control system
becomes complicated and requires modeling and controller
design not readily available in the technical literature.

The purpose of this paper is to overcome the lack of
information about modeling and controlling the input voltage
of the buck converter when the output voltage remains
constant.

The following sections will show the converter modeling
with the state-space averaging method and will present the
regulator design in details. The authors expect the readers
will profit of this detailed analysis of the regulated-input
buck converter and its control system.

Simulations are used to validate the buck converter
linearized model and to test the performance of the designed
closed-loop controller.

Il. BUCK CONVERTER IN PV APPLICATIONS

Fig. 1 shows the simplified model of a photovoltaic (PV)
array connected to a buck converter. The output voltage of
the PV array is Vpy. This voltage must be controlled in order
to keep the array operation at the maximum power point,
which is accomplished by a power tracking algorithm (this
subject is beyond the scope of this text). The maximum
power point tracking (MPPT) algorithm provides the
reference Vpy* for the buck converter. The buck converter
sets the input voltage (which is the output voltage of the PV
array) to the desired value while its output voltage is fixed.

In most typical applications of PV arrays the output of the
array is directly connected to a load or to a battery with an
approximately constant voltage. Although this kind of system
is costless, the lack of the array output voltage control
prohibits the system to operate at with maximum efficiency,
hence energy is wasted. If a power electronic converter [1] is
used to interface the PV array and the load (e.g. a battery that
feeds a DC load or a DC-AC conversion stage) the best
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performance of the PV array may be achieved, hence the
energy utilization is optimized.

This paper proposes a simple and also costless buck
converter that may be used in PV applications where Vpy >
V,. For example, a PV cell whose voltage output varies
between 20 V and 35 V may be interfaced to a 12 V battery

BUCK

by the buck converter.
TVPV*

Fig. 1: PV array connected to a buck converter with
constant output voltage.

PV array

Fig. 2 shows the buck converter. We can notice that,
differently of conventional converters, the buck circuit of this
figure has a constant output voltage and its input voltage
depends on the output of the PV array. The voltage V, may
be kept constant by a battery or by another electronic power
converter, as mentioned before.
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Fig. 2: Buck converter with variable input voltage.

I1l. SYSTEM MODELING
A. PV array

The simple PV array model [2,3] seen in Fig. 1 may have
its diode removed in order to make easier the modeling
process of the PV-buck system. In this case we consider that
the PV array operates as a constant current source. However
in a real situation the array will be forced to operate at the
boundaries of the constant current and constant voltage
modes if a maximum power tracker is employed. With this
simplification the PV array may be represented by the simple
Thévenin’s equivalent circuit of Fig. 3. It is easier to use only
one equivalent resistance Ry instead of using the shunt (Rsy)
and series (Rs) resistances of the original PV array model of
Fig. 1. By using any of these models, with the current source
Ipy or with the equivalent Thévenin’s voltage Vry, only one
energy source will appear in the averaged model (current or
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voltage source). These two models may be chosen arbitrarily
and the following relations are valid.

Rt = Rs+ Ry

M
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Vi = lpy Rs

RTH
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Fig. 3: Thévenin’s equivalent circuit of the PV array operating as a
constant current source.

B. Buck converter
1) State equations

The transistor of the buck converter of Fig. 2 switches
according to the gate signal provided by the control system.
When the switch is closed during the time interval d.T the
buck converter constitutes the circuit of Fig. 4a. When the
transistor is open during the time interval (1-d)T the circuit
assumes the form of Fig. 4b. f =1/T is the switching
frequency of the buck converter and d is the transistor duty

cycle.
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Fig. 4: (a) Buck converter when the transistor is conducting.
(b) The same circuit when the transistor is open.
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Each circuit of Fig. 4 may be described as a set of
differential equations with two state variables: the capacitor
voltage v and the inductor current i.

Equations (3) and (4) hold when the switch is closed.

di

Inductor: L—=v-V, ©)
dt
Capacitor: C dv = _LJFVi_i (@)
dt RTH RTH
Equations (5) and (6) hold when the switch is open.
di
Inductor: |_E =-V, (5)
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dv. v
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Capacitor:
Rry

(6)
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Equations (3) — (6) may be written in the state space form,
as shown in equations (7) and (8).

1
0 — ; 0 0
ait_ LY, -1 Vo @)
dt|v| [z _ -1 vl |0 V
C-R TH
Ay B,
1
; 0 0 -— 0
dji|_ -1 i Lt Vo ®)
™ C-RT,
A2 BZ

Matrices A;, B; and A,, B, are used to determine the A
and B matrices of the averaged state equation. According to
the state-space averaging method [4,5] we can write the
averaged state equation (9), which is the weighted sum of
equations (7) and (8). It is possible to write equations (10)
and (11) because in every switching interval T of the buck
transistor equation (7) is valid during d.T and equation (8) is
valid during (1-d)T. If the switching frequency of the
transistor (1/T) is sufficiently high the averaged equations (9)
— (11) may be used to describe the low frequency behavior of
the circuit (with average currents and voltages). Vectors x
and u in equation (9) contain average states and inputs of the
circuit. Variables <i> and <v> are average states and V, and
V4 are DC values (we assume the input and output voltages
have no AC components).

X=A-x+B-u 9)
A=A,-d+A, (1-d) (10)
B=B,-d+B, -(1-d) (12)

X:{<i>} u{vo} 12)
<V> Viy

2) DC values

Making x =0, which is true when all transients have
faded and the buck converter is in steady state, we obtain the
DC equations (13) and (14) of the PV-buck system.

0=A-X+B-U (13)

X=-Al.B.U (14)
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From (14) we obtain (15), where | and V are the DC
(steady state) values of <i> and <v>.

Vv V,/D

The expression of V found in (15) is the well-known static
input-to-output ratio of the buck converter.

3) Small signal analysis

In order to develop the control system of the buck
converter it is necessary to obtain a converter model
linearized at a chosen operating point. This linear model,
which is valid for small signal variations, provides a linear
transfer function that can be used in the design of the closed-
loop control system.

The buck converter in this paper works in the voltage-
control mode. The current-programmed mode could also
have been considered, but it is not necessary unless we need
to directly control the inductor current for any special
purpose.

Generally the duty cycle d is used as the control variable
in voltage-mode DC-DC converters. As we are concerned
about the input voltage control, however, it is more
convenient to obtain a model equation whose control variable
is d’, the complement of the transistor duty cycle given by
equation (16), since positive variations of d produce negative
variations of v.

d'=1-d (16)

Let’s maked’ = D' +d’ , where D' is the DC value of d’

and d' is a small signal AC perturbation. We wish to obtain
a model that describes the behavior of the converter when
small variations of the control variable occur, i.e. a linear
model of the buck converter for the response to d’ near the
operating point D'. Let’s also make x = X+ X, where X is
the averaged state vector, X contains the DC steady state
values (I and V) and X represents small state disturbances
near the operating point X. Similarly we can add small
perturbations to the input u as shown in equation (19), but in
this modeling we have assumed that G = 0.

d'=D'+d’ (17)
X=X+X (18)
u=U+u (19)

The averaged equation of the PV-buck system may be
written in function of the control variable d’, as equation
(20) shows.

x={A;-(1-d)+ A, -d}x+{A; - (-d)+A,-d}-u (20)
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Equation (21) is obtained by substituting (17) — (19) into
(20), by ignoring the nonlinear terms and by applying the
Laplace transform.

sK(s) = AX(S) + d'S)I(- A, + Ay )X+ (=B, +B,)U} (21)

From equation (21) we can obtain equation (22), which
expresses the vector transfer function G(s).

R -1
G(s)= % = (s{l O} - AJ .
(s) 01

'{(_Al +A)X+(-By + Bz)U}

(22)

From (22) the transfer functions G, (s) = f(s)/& '(s) and

Gy ()= \7(5)/& '(s) are obtained. Gy(s), the transfer function

we are interested in, describes the response of the buck
converter input voltage to small variations of d’around the
operating point V=V, /D, where D = 1-D'.

With some simple mathematical manipulations we can
find the expression of the transfer function Gy (S) seen in
equation (23), where | and V are the DC steady state current
and voltage from equation (15).

Ry (DV +5LI)

Gy(s)=
Y $2LCRyy + 5L+ D2Ryy

(23)

IV. NUMERICAL EXAMPLE

A. Transfer function

Once we have found the transfer function Gy(s), which
gives the small signal response of the input voltage to the
control variable d’, let’s analyze a numerical example.

The following parameter values — Tables 1 and 2 — will
allow us to obtain a numerical transfer function through
which the dynamic response of the converter may be studied.

Table 1

PV Cell
Rsh 13.5620 QO
Rs 0.2670 Q
Ipy 19.2000 A
V1u 260.3904 V
Rru 13.8290 Q

Table 2

Buck Converter

L 0.0020 H
C 0.0015 F
Vo 15.0000 V
D 0.5000
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Equation (24) shows the numerical transfer function of the
buck converter with the PV array connected to its input.

09216s+ 2074
4149e — 5s% +0.002s + 3457

Gy(9) = (24)

B. DC characteristic

Fig. 5 shows the static transfer characteristics of the real
converter and of the linear model Gy(s). This figure clearly
shows that the transfer function is a linear model of the
converter around the chosen operating point D' =0.5.
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real system

B e e b b Bttt linear model |

e

04 05 06 07 08

D'=1-D

0.3

Fig. 5: Static characteristics of the real converter and of the linear
model — transfer function Gy(s).

Fig. 5 shows that the choice of D'=0.5 is adequate
because this is the midrange of the control variable and
mainly because the derivatives of the static input voltage
with respect to the control variable may become extremely
low or extremely high as the operating point gets farther
from D’'=0.5.

C. Open-loop dynamic response

Fig. 6 shows the open-loop step response of the real
system and of the linear model Gy(s). They are almost
identical except at the higher peaks where the model error is
bigger.

V. CLOSED-LOOP CONTROL SYSTEM

Fig. 7 shows the feedback closed-loop control system used
to control the input voltage of the buck converter. As stated
earlier the output of the PV array, whose voltage is Vpy, is
connected to the input of the buck converter.

In the scheme of Fig. 7 G¢(s) is the controller transfer
function, Gy(s) is the converter transfer function and H(s) is
the feedback transfer function. As we are focusing on the
control theory and on the dynamic analysis of the converter,
the gain of the pulse-width modulator (PWM) that controls
the switch of the buck converter does not appear in the
scheme of Fig. 7. As the plant input is the control variable
d’, the PWM is inherently modeled and its gain is unit.

The loop gain is Gc(s)F(s), where F(s) = Gy(s)H(s). For
example let’s make H(s) = 0.02, which corresponds to a
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voltage transducer with 1/50 conversion ratio and negligible
dynamic characteristic.
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Fig. 6: Open-loop step response of the system composed of the PV
array and the buck converter with constant output voltage.
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Fig. 7: Closed-loop control system for the buck converter.

A. PID regulator

This section shows the tuning process of the proportional
integral derivative (PID) regulator used in the control system
of the buck converter. The derivative compensator helps to
improve the phase margin of the closed-loop system and
consequently to improve the dynamic response and stability.
The proportional compensator is used to increase the
bandwidth of the system, which allows fast transient
response. The integral compensator is necessary to warranty
low steady-state error in the input voltage of the buck
converter.

1) Proportional compensator

Fig. 8 shows the frequency response of F(s). From this
bode plot we can find the first-order approximation of the
open-loop system by using the two asymptotes. This
graphical method provides the open-loop cut-off frequency
of the approximated first-order system, which isa,. The
approximated first-order transfer function is F,(s) in equation
(25), where Gpc is the DC gain of F(s).

Goc

Gyi(s) = m
o

(25)

For high frequencies near and abovee, the transfer

function of equation (25) may be approximated as F(s) in
equation (26).
GDC

Fy(s) = s/o
0

(26)

The modulus of the approximated transfer function of
equation (26) may be written as ||| in equation (27).
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(27)

I =2

The purpose of the proportional compensator is to
displace the bode plot vertically in order to set a new cross-
over frequency for the closed-loop system, as Fig. 8 shows.
By multiplying function F(s) by a factor Kp the bode plot is
displaced upward and ¢, is the new cross-over frequency.

From equation (27) we can write an expression for Kp
with the desired ¢, equation (28).

@c

Kp = (28)

@,Gpc

For the system studied in this paper, with the parameters
given in Tables 1 and 2, we find w, ~400 rad /s and Gpc =

1.2. Let’s design the closed-loop system for a cross-over
frequency fc = 1500 Hz, aoc = 9.4248e+003 rad/s. This
results Kp = 19.6350. Fig. 8 shows the bode plot of F(s)Kp =
Gv(s)H(s)Kp. We can see that the cross-over frequency is wc
= 8.7354e+003 rad/s, fc = 1.3903e+003 Hz, very close to the
desired frequency. This shows that the approximations made
in equations (26) and (27) are reasonably good for practical
purposes.

2) Integral compensator

The next step is to add a pole at the origin and a zero at an
arbitrary low frequency so that the closed-loop system will
have an infinite DC gain, thus allowing null steady state error
for step inputs. The transfer function of the integral
compensator is given by equation (29).

1. _Sto
G| =1+ S = s (29)

A good choice for the zero frequency is @ = 10 rad/s,
which is much lower than ac. So the integral compensator
will actuate at DC and low frequencies and will have
practically no effect at high frequencies. Fig. 9 shows the
bode plot of F(s)Kp G|(5).

3) Derivative compensator

Finally the derivative compensator can be used to improve
the dynamic response by increasing the phase margin. The
derivative transfer function Gp(s) is given by equation (30).

1+5s/w;)

Go (8) =Ko (L+s/wp)

(30)

The transfer function Gp(s) adds a pole and a zero to the
system. The zero may be arbitrarily placed below the cross-
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over frequency ac Let’s say that @; = @c - Aw, where Aw
must be chosen in order to achieve the desired phase margin
reduction. After placing the zero we must choose the pole
frequency so that the maximum phase displacement occurs
exactly at wc. From the control systems theory [6,7] we

know that ¢ = /wz -, , SO We can write equation (31).

2
wp =0 [, (31)
The derivative gain Kp must be chosen so that Gp(s) does
not cause any gain increase to the compensated system, as
the cross-over frequency has already been determined by the
proportional gain Kp. The gain Ky is given by equation (32).

Kp =@z /wp

(32)
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Fig. 8: Frequency responses of F(s) and F(s)Kp.
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Fig. 9: Frequency response of F(S)KpG(S).
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For the system studied in this paper, with the parameters
of Tables 1 and 2, with Aw = 3000 rad/s, we have: w; =
5.7354e+003 rad/s, wp = 1.3305e+004 rad/s, Kp = 0.6566.
Fig. 10 shows the Bode plot of the system loop gain with the
addition of the derivative compensator, where we can notice
that the phase margin is improved without any changes to the
magnitude of the frequency response, i.e. the previously
determined cross-over frequency remains fixed even with the
addition of the derivative compensator Gp(S).

Bode Diagram

100

Magnitude (dB)
A
o

o
T

Phase (deg)

Frequency (rad/sec)

Fig. 10: Frequency response of F(s)KpG,(S)Gp(S)-

4) Regulator transfer function

The desired PID regulator transfer function is finally
given by equation (33).

Ge(8) = Kp -G (5) Gp (9) (33)

=
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Fig. 11: Responses of the closed-loop system to input steps
att=0s,t=0.1s,t=0.2sandt=0.3s.
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VI. RESULTS

With the regulator designed in the previous section the
buck converter connected to the PV array attains fast
transient response, negligible steady state error and excellent
stability (assured by the large phase margin of the
compensated system). Fig. 11 shows the step responses of a
simulated converter and of the closed-loop transfer function
of equation (34).

Gey () = Gy (8)/ 1L+ Gy (S)H(5)Gc ()} (34)

VII. CONCLUSIONS

This paper has shown how a buck converter with input
voltage control is modeled with the state space averaging
method. Very few papers in the literature deal with the input
control of DC-DC converters. The detailed modeling process
presented here is rarely found elsewhere. Another
contribution, although minor, is the modeling with the
control variable d’ instead of d. This paper has also
presented very comprehensive instructions for the design of
the PID regulator used in the closed-loop control system of
the buck converter.

The step responses presented in Fig. 6 show that the linear
model exactly describes the behavior of the real system near
the operating point. The step responses of Fig. 11 show that
the closed-loop system of Fig. 7 works perfectly with the
designed PID compensator.
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