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Abstract-- This work presents the study of the applica-
tion of neural networks in the maximum power point
tracking system (MPPT) of wind turbines without wind-
speed sensor. The elimination of this sensor aims at reduc-
ing problems related to maintenance. The neural network
inputs are the mechanical power and the wind turbine
rotor speed, and its output is the estimated wind speed.
The training of the neural network was made using a spe-
cific software (MATLAB). The models of wind generation
and the neural net have been evaluated using the
PSCAD/EMTDC. The wind energy system consists of a
wind turbine driving a squirrel cage induction generator
which is connected to the utility grid through a back-to-
back PWM controlled voltage source converter (VSC).
The induction generator is controlled to allow the wind
turbine to always run at optimum speed (MPPT), thus
extracting the maximum energy from the wind.

Keyworkds induction generator, neural networks,
MATLAB, PSCAD/EMTDC, wind turbines, wind energy.

. INTRODUCTION

he global warming caused by the high concentration of

harmful gases in the atmosphere, along with the increas-
ing demand for electric energy, have increased the attention to
renewable energy in recent years.

Thus, the use of wind energy has increased around the
world. This can be explained by the recent development of
better turbines and also power electronic circuits responsible
for the connection of the wind turbines to the grid. Adequate
control strategies allow such devices to control electric gen-
erators so that the turbines can extract maximum power from
the wind, thus operating in its maximum efficiency. The opti-
mum speed reference for the generator is determined by the
measurement of wind speed [1,2].

However, the measurement of wind speed involves devices
that may present some difficulties due to the place where they
are installed, normally behind the turbine, where the wind
speed is different from the actual speed in front of the turbine.
Another disadvantage in the use of these sensors is the com-
plex maintenance logistics, especially, in turbines installed
offshore.
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The objective of this work is to present a maximum power
point tracking (MPPT) estimator for a wind turbine using arti-
ficial neural networks (ANN). With this technique, it is possi-
ble to eliminate the sensor that measures wind speed. For the
determination of the ANN’s input and output pairs, two mod-
els of wind generation system have been developed in the
simulation program PSCAD/EMTDC. In the first system, the
induction generator is connected directly to the grid; and, in
the second one, it is connected through a back-to-back PWM
converter, which allows the turbine to operate close to the
point of maximum efficiency. The first model was used to
train the neural network. The simplified block diagram of the
systems can be seen in Figures 1 and 2.

Artificial neural networks are widely used in various appli-
cations, such as pattern recognition, classifying and optimiza-
tion combinatory problems [3, 4]. In this work, the use of
ANN’s is justified by the complexity of the necessary algo-
rithm for the determination of wind speed, which is obtained
easily from measured variables like rotor speed and mechani-
cal power.

The neural network is trained by using as input parameters
mechanical power and rotor speed, while the output is the
estimated wind speed. After training, the neural network is
modeled in the PSCAD/EMTDC program.

Il. WIND ENERGY FUNDAMENTALS

Wind turbines are responsible for the conversion of the ki-
netic energy of the wind into rotational mechanical energy.
The kinetic energy is captured in a rotor which is connected to
an electric generator [1], where the mechanical energy is then
converted into electricity.

Wind turbines can be classified in two groups, depending
on how they are connected to the grid [5, 6]: fixed and vari-
able speed turbines.

The fixed speed turbines are connected directly to the grid,
most of the time by means of the stator windings of a squirrel
cage induction generator. This type of turbine is shown in
Figure 1.

Turbines operating at variable speed need to be connected
to the electrical system through static converters. These tur-
bines present a control system that allows the extraction of
maximum energy from the wind [7]. One possible control
block diagram for this kind of system is shown in Figure 3.
Whenever wind speed varies, a new angular speed reference
for the rotor, wger, is calculated in such a way as to force the
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turbine to operate at or close to the point of maximum effi-
ciency.
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400V 13.8kV
Transformer
Wind Turbine
225 kw

Fig. 1. Wind turbine-diesel hybrid system - fixed speed turbine.

The turbine speed reference is determined by:

Ay -V
Wrer = % ' 1)
where R is the wind turbine rotor radius, v is the wind speed
and Aopr is the turbine Tip Speed Ratio (relation between the
wind speed and rotor tip speed).

For speed control, the speed reference wgrer is compared
with the measured induction generator angular speed. The
resulting signal from this comparison is applied to a PI (pro-
portional plus integral) controller, responsible for the speed
regulation. The output of the PI regulator is the signal that
represents the component of the reference current ig*. The
other current component reference in the d-axis is ig*, which
is a constant value. This current is responsible for the mag-
netization of the induction machine. The Park inverse trans-
formation is applied in these two currents, resulting in the
three-phase currents reference, ig,*, igp*, igc*. They are ap-
plied to a hysteresis band current controller of the induction
generator side VSC converter.

According to [8] [9], the power converted by a wind tur-
bine is proportional to the cube of the wind speed, and is
given by:
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Fig. 2. Wind diesel hybrid system as variable speed turbine.
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Fig. 3. Control system block diagram.

where Py, is the turbine mechanical power, p is the air density,
R is the rotor radius, Cp is the turbine power coefficient and v
is the wind speed.

Figure 4 shows the relation between the power coefficient
Cp and the tip speed ratio A. This relation shows that the
maximum power is extracted when the turbine operates at
Aopt. Thus, for a given wind speed, the angular speed of the
turbine must be adjusted according to (1), in order to guaran-
tee that A is kept close to Aopr.

I1l. NEURAL NETWORKS IN WIND SPEED ESTIMATION

The objective of the application of neural networks is the
wind speed estimation from other parameters more easily
measured. This process increases the system robustness as
fewer sensors are used. Moreover, it is possible to prevent
eventual problems in wind speed measurement caused by the
installation of the anemometer, which, in general, is located
over the nacelle and is subject to the effect of the movement
of the turbine. The neural network is used to estimate the cor-
relation between the input and the output parameters.

Fig. 4. Cp and X relationship.

With the objective of evaluating the proposed approach, the
wind-diesel system of the Island of Fernando de Noronha, PE,
Brazil, was modeled in the PSCAD/EMTDC. This system
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consists of a wind turbine of 225 kW connected directly to a
weak power system through a squirrel cage induction genera-
tor. For our study a back-to-back connected PWM controlled
VSC was considered for a better control of the power flow.
The power of the diesel generator is 910 kVA.

The modeling has two stages. The first one uses the system
directly connected to the grid just for the survey of the input
and output pairs. The inputs are the mechanical power and the
rotor speed, while the output is the estimated wind speed. The
acquisition of the data set was carried out in the model directly
connected in order to allow the sweepings of the rotor speed
in the operation range of the turbine (which would not be pos-
sible in the system with back-to-back VSCs, with rotor speed
specified by the control). This stage is shown in Figure 5. The
second stage is concerned with real time implementation of a
neural network to estimate the wind speed, considering the
model where the wind turbine is connected to the grid through
a back-to-back connected PWM converter.

Figure 6 shows the wind profile used in the data survey for
training the neural network.

From this wind profile and the pre-selected values of the
rotor speed, the mechanical power produced by the system
was obtained, as shown in Figure 5. The rotor speed variation
is between the range of 190 rad/s and 500 rad/s (total of 62
values). There have been 100 values sampled from the wind
profile shown in Figure 6 and the resulting mechanical power,
forming a set of 6200 input/output pairs. Actually, this data set
searches the curves as shown in Figure 7, which correspond to
the mechanical power of the turbine as function of the wind
speed, parameterized by the rotor speed. The input and output
pairs are stepped, so that its variation can be settled between -
1 and 1 with average value almost null [3].

The neural network structure, which can be observed in
Figure 8, consists of two layers, the first having five neurons
with hyperbolic tangent activation function, and a linear neu-
ron in the output layer. The function to minimize was the
quadratic average error, and the back-propagation algorithm
was used with variable learning rate and batch training type
[4, 3]. The 6200 input / output pairs have been divided into
sets of training (60%), validation (20%) and test (20%). Over-
training was used as stop criterion.

Figure 9 shows the evolution of errors for each of the sets
throughout the training process. The error for the training set
was 1.26% and 1.31% for the validation set in a total of 140
epochs.

Figure 10 shows the comparison between the wind speed in
the test set (obtained from the original wind profile) and the
wind speed estimated by the neural network. A good ap-
proximation between the two sets is observed. The existing
errors are due to the premature stopping of the training.
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Fig. 5 Diagram of input and output calculation and neural network
training

IV. SIMULATION RESULTS

Given the wind profile shown in Figure 6, the wind system
was simulated during 60 seconds and its performance can be
compared with the conventional maximum power point track-
ing algorithm. Two cases have been studied: in the first, the
neural network had as input the mechanical power and the
rotor speed; in the second, the electric power and the rotor
speed were the ANN inputs.

Once the input / output pairs had been calculated for the
training and the neural network is used in real time, it was
necessary to format the data obtained from the wind system
simulation and perform the inverse process for the use of the
wind speed (ANN output).

In the first case, according to (1), the optimum speed refer-
ence can be determined from the estimated wind speed. The
curves in Figure 11 show the comparison between the esti-
mated speed reference and the speed reference calculated us-
ing conventional algorithm. A good agreement between both
calculations can be observed. Figure 12 shows the comparison
between the electric power of the generator obtained with the
use of the conventional algorithm and the one obtained with
the neural network.
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Fig. 6. Wind profile used in training data acquisition
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Fig.7. Turbine power variation versus wind speed for some rotor
speeds

The conventional algorithm allows the turbine to operate
close to the optimum point, where there is maximum electric
power, given the instantaneous conditions of wind. The elec-
tric power obtained from the estimated wind is approximately
the same as using the conventional algorithm.

In the second case, Figure 13 shows the comparison be-
tween the speed reference and the one obtained from estima-
tion using the neural network and the conventional algorithm.
The comparison between the electric powers obtained with the
conventional algorithm and with the neural network is shown
in Figure 14. In this in case, there are some speed differences
(Figure 13) and power differences (Figure 14). This can be
explained by the relation between the mechanical power and
the electric power given by:

_1032

Pm - Pele dt
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Fig. 8 Structure of the neural network
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Fig. 10. Comparison between estimated wind speed and test set

where Py, is the mechanical power, P is the electric power, J
is the inertia of the generator and w is the mechanical speed of
the rotor. There is a dynamic involving both powers. Addi-
tionally, in a steady state, the efficiency of the electric genera-
tor must be taken into account.
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Fig. 11. Comparison between estimated speed and obtained from
conventional algorithm (mechanical power as input in ANN)
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Fig. 12. Comparison between induction generator electric powers
obtained from neural network and conventional algorithm (mechani-
cal power as input in ANN)

V. CONCLUSION

This work proposed a system for tracking maximum power
point of a wind turbine using ANNS, eliminating the necessity
of using sensors to measure wind speed.

The results of the measured speed and its estimation have
been compared, and this algorithm can be considered a viable
alternative. The appropriate choosing of inputs, as well as the
conditioning of all points, have made possible the fast conver-
gence in training the neural network. The trained ANN im-
plemented in the PSCAD/EMTDC proved efficient, not inter-
fering with the dynamics of the control system.

The initial objectives have been reached, being possible to
estimate wind speed with good accuracy. The substitution of
mechanical power by electric power in the algorithm is an
interesting alternative, considering how easy it is to obtain
electric variables. This alternative could be considered for
future works.

Another proposal for this application is the implementation
of the ANN in a DSP operation with fixed point calculation,
using the technique known as hardware in the loop. This tech-
nigue allows the communication between the DSP and a simu-
lator.

The performance of DSP in power system models can be
studied, without the necessity of a laboratorial prototype.
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