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Abstract - This paper shows how it is possible to 

decouple the electromagnetic torque oscillations in two-
phase induction machine using spiral vector theory. 
Simulations were performed to solve differential 
equations. The comparative graphics are also shown in 
the paper.   
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I.  INTRODUCTION 

It is necessary to develop an adequate model that makes it 
possible to mathematically describe an electrical machine for 
an efficient control. The classic technique for modeling the 
symmetrical two-phase induction machine (STPIM) is the 
dq0 transformation [1], which is very popular.  

Spiral vector theory can be used for steady state and 
transient analysis of AC machine and circuit [2] [3]. It has 
been used for analysis of induction motor, synchronous 
machines, and permanent magnet synchronous motors. This 
paper presents the transient and steady state analysis of 
STPIM by using spiral vector operating under unbalanced 
voltage. Moreover, it is possible to write an expression to 
electromagnetic torque where can be seen each term of 
positive sequence, negative sequence torque and oscillations.  

This work is organized in five sections. The second 
section gives brief introduction to spiral vector theory. The 
third section use spiral vector theory to analysis the STPIM 
under unbalanced voltage. The fourth section gives computer 
simulation graphics and the fifth section the conclusion. 

 
II. SPIRAL VECTOR INTRODUCTION 

The spiral vector is the exponential function with a 
complex index, as given below. 

 
      ω+η=δ= δ j-    ,Aei t                          (1) 

 
 Where δ  is the complex frequency,ηandω  are real 

numbers and j is the complex operator. 
As the time goes on, it depicts a spiral on the complex 

plane. When 0=η , it becomes a circular vector on the 
complex plane, which corresponds to steady state alternating 

current quantity. When 0=ω , it expresses a decaying direct 
current quantity. When 0=δ , it expresses a steady dc 
quantity. Thus the spiral vector can express almost all kinds 
of variables which appear in electrical engineering. A spiral 
vector in the complex plane is shows in fig. 1. 

 

 
Fig. 1. Spiral vector in the complex plane. 

 
The general solution for the lumped constant electric 

circuit is given by 
 

      ( )
( ) v
pB
pAi ⋅=                                    (2) 

 
Where A(p) and B(p) are polynomials of dt/dp = , i and 

v are symbols for currents and voltages respectively and can 
assume any form of expressions. Let v be expressed by the 
following form 

 
      ( ) tjtj Ve2eV2v ωφ+ω ==                     (3) 

 
 Equation (3) is a general solution with 0=η , and 

where V is phasor. The general solution of (2) is obtained as 
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Where n21 ... , δδδ are characteristic roots of B(p)=0, which 
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is a characteristic equation. All the terms of solution in (4) 
are spiral vectors.  
 

III. ANALYSIS OF STPIM USING SPIRAL VECTOR 
THEORY 

A STPIM and its model for analysis are shown in fig.2. 
For phase ‘a’ of the stator and phase ‘r’ of rotor, voltage 
equations are given in (5) and (6), respectively. In the same 
way flux linkages equations are given in (7) and (8).  
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Fig. 2. Symmetrical two-phase induction machine model. 

 
 gaa1a1a ppiliRv λ+⋅+⋅=                          (5) 

grr2r2 ppiliR0 λ+⋅+⋅=                        (6) 

( )θ+θ+=λ senicosiiM sraga                      (7) 

( )θ−θ+=λ senicosiiM bargr                       (8) 

 
Under steady state conditions ia, ib, ir and is are given  

 
( )11tj

aa eI2i φ+ω
•

=   ( )2/tj
ab 11eI2i π+φ+ω

•
=         (9) 

( )22tj
rr eI2i φ+ω

•
=   ( )2/tj

rs 22eI2i π+φ+ω
•

=       (10) 

Since the all currents are spiral vectors (11) and (12) are 
 

ab iji ⋅=                                      (11) 

rs iji ⋅=                                              (12) 
 

Using the equations above it is possible to find (13) and 
(14) bellow. 

( ) '
ra1a1a piMpiMliRv ⋅+⋅++⋅=              (13) 

( ) ( ) ( ) ar
'
rr2

'
r2 ijpMijpMliR0 ⋅ω⋅−+⋅ω⋅−⋅++⋅=  (14) 

 
 Where ωr is the electrical rotor speed, R1 is the stator 

resistance of phase ‘a’, R2 is the rotor resistance of phase ‘r’, 
l1 is the stator leakage of phase ‘a’, l2 is the rotor leakage of 
phase ‘r’ and M is the mutual inductance.  

It should be noticed that here that the voltage and currents 
in (13) and (14) are of phases ‘a’ and ‘r’ only, the other 
phases of the primary and secondary two phases being left 
out. Phases ‘a’ and ‘r’ are thus segregated from the other 
phases. This is called phase segregation method. This means 
that one only of the two phases is sufficient to write the 
circuit equation of the two-phase machine. Equation (13) and 
(14) are valid for both steady state and transient state 
operations. Replacing the stator and rotor phase subscripts 
‘a’ and ‘r’ by ‘1’ and ‘2’, respectively, (13) and (14) can be 
expressed by the following matrix form [2], [3]. 
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Under symmetrical (or balanced) operation state variables 

of two phases are symmetrical. Under asymmetrical 
operation asymmetrical state variables in (15) are 
transformed by the spiral vector symmetrical component 
method into symmetrical spiral vectors as bellow.  
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STPIM modeling using spiral vector and symmetrical 

component concept makes it possible to decompose the 
electromagnetic torque into its positive and negative 
components, as well as torque oscillations as can be seen in 
(18). 
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sv 

elT is the electromagnetic torque equation from spiral 
vector theory.  

 STPIM modeling using dq0 transformation in the 
stationary reference frame is given by (19) and (20) as 
follows [1]. 
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(19) 
( )s'

rq
s
sd

s'
rd

s
sqp

dq 
el iiiiMzT −⋅⋅=                (20) 

 
  dq 

elT is the electromagnetic torque equation from dq0 
transformation theory. 

 The mechanical equation is obtained as follows. 
 

( ) r
p

f
Lelr

p z
K

TTp
z
J

ω−−=ω                    (21) 

 
Where J is the inertia of the rotor and the connected load, 

zp is the par of poles, Kf is the friction losses coefficient and 
TL is the load torque. 

Probably the reader must to be thinking: what the relation 
between i1

+, i1
-, i2

+, i2
-, is

sq, is
sd, i’s

rq and i’s
rd to make possible 

write (18)? The answer is given bellow. 
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Using the equations above it is possible to find (22) as 
bellow. 
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In the other hand it is necessary to remember three 

relations from complex variables theory as follows.  
 

{ } { } { } { } { }212121 ZReImZImZReZReZZRe −=        (24) 
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Using (24) and (25) in the first and last terms from (23) 
and multiply the result by zp.M it is possible seen positive 
and negative electromagnetic torque components. 
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( )+−sv 
elT  is the sum of positive and negative 

electromagnetic torque components. The first term in (27) is 
the positive and second term is the negative electromagnetic 
torque component.  

In the same way using (24), (25) and (26) in the second 
and third terms from (23) it is possible to write the 
electromagnetic torque oscillations as follows. 

 

( ) { } { }{ }+−−+ ⋅−⋅⋅= 2121 ii Imii ImMzT p
oscsv 

el        (28) 
 

( )oscsv 
elT  is the electromagnetic torque oscillations.  

 
It is clear in (27) that the first term it is responsible for 

useful electromagnetic torque and the second term is 
responsible to cause an opposite effect in the useful 
electromagnetic torque. In the other hand (28) shows that the 
electromagnetic torque oscillations it is a result from 
interaction between positive and negative current 
components.  

 
IV.  COMPUTER SIMULATION 

To compare both types of modeling under unbalanced 
voltage, simulations were performed to solve differential 
equations. The results were obtained from a symmetrical 
two-phase, four poles, 1 HP induction machine. The voltage 
applied in the stator winding ‘a’ is two time grader than the 
applied voltage in the stator winding ‘b’. Fig. 3 shows the 
electromagnetic torque using dq0 transformation and spiral 
vector. Fig. 4 shows the speed using dq0 transformation and 
spiral vector theory; fig. 5 shows positive and negative 
electromagnetic torque without oscillations from spiral 
vector theory and electromagnetic torque from dq0 
transformation. Fig 6 and 7 shows mechanical speed from 
dq0 transformation and spiral vector theory without 
electromagnetic torque terms oscillations from equation (18).               
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Fig. 3. Electromagnetic torque. a) dq0 transformation, b) Spiral vector, c) Torque oscillations, d) Positive and negative components 
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Fig. 4. Mechanical speed using dq0 transformation and spiral vector theory. 
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Fig. 5. Positive and negative electromagnetic torque without 
oscillations from spiral vector theory and dq0 transformation. 
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Fig. 6. Mechanical speed without oscillations from spiral vector 
theory and dq0 transformation. 
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Fig. 7. Mechanical speed without oscillations from spiral vector 
theory and dq0 transformation, zoom in fig 6. 

 

V.  CONCLUSION 
STPIM modeling using spiral vector theory leads to the 

same results obtained using dq0 transformation as can be 
seen in the a) and b) from fig 3 and fig 4. However, spiral 
vector and symmetrical component concept makes it 
possible to decompose the electromagnetic torque into its 
positive and negative components, as well as torque 
oscillations. Each component is valid in steady and transient 
states as can be seen in the c) and d) in fig. 3. 

Moreover, it is possible to write an expression to 
electromagnetic torque where can be seen each term of 
positive sequence, negative sequence torque and oscillations. 
Such results can not be achieved using dq0 transformation, 
as the symmetrical component concept can be used only in 
steady state analysis because in dq0 transformation all 
currents are considered real values. The electromagnetic 
torque expression (18) obtained using spiral vector is a novel 
result in symmetrical two-phase induction machine analysis 
and can be applied in asymmetrical two-phase machine. 

When electromagnetic oscillations from (28) is not 
consider to solve differential equations the spiral vector 
theory leads the electromagnetic torque and speed in the 
middle value to electromagnetic torque and speed from dq0 
transformation as can be seen in fig 5, 6 and 7. In fact the 
positive component is responsible for dynamic response 
even if the unbalanced voltage in the stator winding ‘a’ is 
two time grater than voltage in stator winding ‘b’.  

STPIM modeling using spiral vector theory suggest new 
ideas to study unsymmetrical two-phase induction machine. 
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