
SIMPLIFIED MODELS OF KALMAN FILTER FOR FUNDAMENTAL 
FREQUENCY, AMPLITUDE AND PHASE ANGLE DETECTION 

 
M. S. Pádua,                      S. M. Deckmann        

School of Electrical and Computer Engineering 
State University of Campinas 

Campinas, SP, Brazil 
marcelo,sigmar@dsce.fee.unicamp.br 

             F. P. Marafão                     D. Colón 
School of Automation and Control Engineering 

Paulista State University 
Sorocaba, SP, Brazil 

fmarafao,dcolon@sorocaba.unesp.br 
 
 

Abstract – This paper discusses two different 
applications of the discrete-time Kalman Filter (KF) for 
the identification of the amplitude, angular frequency 
and phase angle of the fundamental voltage of a power 
system. Modeling the fundamental voltage (first of a 
single-phase and then of a three-phase system) as an 
output of a linear time-invariant system with random 
perturbations and measurement noise, it is possible to 
construct a KF that estimates the state of the model. Such 
estimates are then used to obtain the fundamental 
frequency. Simulations are in force to show that the filter 
converges to the real values even if the noise 
measurement and perturbation variables are not wide-
sense stationary white noise (lack of optimality).  
Practical results of the KF and the frequency estimation 
algorithm are obtained by means of their implementation 
on a digital acquisition and processing system. 
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I. INTRODUCTION 

The requirement of synchronization of several electronic 
devices (such as active power filters, uninterruptible power 
suppliers, dynamic voltage restorers, distributed generators, 
etc.) has been motivating the development of different 
algorithms to detect the amplitude, frequency and phase 
angle of the power grid fundamental voltage. 

No matter how complex the detection algorithm is, there 
is always a compromise between precision (or in a wide 
sense, robustness) and rapidity of the response. This means 
that we have to sacrifice one despite the other. Besides, the 
computational complexity can be a major concern, as in real-
time analysis and control.  

As far as rapidity and precision of response are concerned, 
the Kalman Filter offers a nice compromise in many 
applications. Introduced in 1960 by R. E. Kalman [1], this 
filter gives the best estimate for the state of a linear-time 
invariant system in the presence of wide-sense stationary 
white noise process perturbations and measurement noise.  

The list of successful applications of KF is ever growing 
(see, for example, [2,3] for applications in navigations, radars 
[2,4], telephony [3], demographics [2] and control systems 
[2]). In the specific areas of power systems and power 

electronics, the use of KF are relatively recent, (see for 
example, [5-8] for interesting applications). 

In this paper, the voltages of a power system are modeled 
as outputs of linear time-invariant systems (of discrete-time, 
as the KF are going to be implemented in a digital signal 
processor) subjected to perturbations and noises. A KF will 
be constructed to estimate the state of the model and such 
estimates will be used to calculate phase angles and 
frequencies. This algorithm is an improvement compared to 
the more elaborate techniques like those presented in [5,6] or 
even the simple PLL approach discussed in [9].  

A major difference of this algorithm is that voltage 
distortions (harmonics and noise) will be treated as 
measurement noise. Despite this assumption destroys the 
optimality of the filter, it will be shown by simulations that 
convergence is nevertheless achieved. Such basic 
consideration reduces dramatically the implementation 
complexity of the KF estimation when compared with 
classical approaches. 

Initially, an algorithm to estimate the frequency and phase 
of a single-phase system will be presented and discussed and 
then, a three-phase version of the KF will be proposed.  

II. SINGLE-PHASE KALMAN FILTER 

As proposed in [1] and discussed in [7,8], consider a 
discrete-time linear time-invariant model in state-space form: 
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where: 
• k is the step, 
• xk is a n x 1 state vector of the system in the step k, 
• yk is a m x 1 vector of the measurement in the step k, 
• A is a square matrix n x n, which should be ajusted in case 

of frequency deviations of the input signals, 
• B is a constant m x n matrix, 
• wk is a n x 1 vector representing process noise (due to 

perturbations and inaccuracy of the dynamic model), 
• zk is a m x 1 vector representing measurement noise (due to 

the inaccuracy of transducers and signal conditioning 
circuits) on the signals to be digitalized. 
Defining:  

• Q – process noise covariance, 
• R – measurement noise covariance, 
 
one can define a Kalman Filter as an state estimator for the 
system (1) where: 
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• 1/ˆ −− kkk xx  – initial estimation error, 

• Pk/k-1 – estimation covariance error, 
• kk xx ˆ−  – final estimation error, 

• Pk – final estimation error covariance and 
• Kk – Kalman gain. 
 

The state estimation kx̂  based on measurements yk is 
achieved in two parts: 1) prediction step and 2) correction 
step, as shown in Fig. 1. The first step estimates the state 
ahead and gets the error covariance ahead. The second step 
computes the Kalman gain, update the estimation with 
measurement and update the error covariance. 
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Fig. 1.  KF description. 
 

According to [5-8], a good model for the real fundamental 
wave of a single-phase power system can be represented by 
the output of a discrete-time state-variable model: 
 

    V1(k) = A.V1(k-1) + wk-1 

                             v(k) = B.V1(k) + zk , 
 

where the state vector V1(k) = 
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signals in phase (v1(k)) and orthogonal (v1⊥(k)) to the 
measured signal v(k), B = [ ]01  is the input matrix, wk has a  
dimension 2 x 1 and zk, 1 x 1, and  

A = 
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Differently from other proposals, as [6], e.g., in this paper 
the harmonic components are not included in a deterministic 
way (that is, in the very matrix A). They will be considered 
perturbations and, in this sense, it will be modeled by the 
measurement and process noises. This assumption simplifies 
a lot the calculation of matrix A. Thus, the filtered signals in 
V1(k) presents the same amplitude of the fundamental 
component of v(k), what means that the magnitude of the 
fundamental component is calculated by: 
 2

1
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1 )()( ⊥+≅ vvM .  (3) 
The instantaneous phase angle can be obtained from: 
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and the fundamental frequency f1 can be estimated from 
zero-crossing detection of the signal θ(k) and improved with 
an average of the last four estimates [10]. 

Matrix A is responsible for the performance of the KF 
when there is a frequency variation in the input signal. As 
N = fs/f1, changing f1 leads to changing the elements of matrix 
A, if fs is kept constant. In order to make the KF immune to 
these disturbs, the identification of f1 is essential. 

The filtering characteristics and the convergence speed of 
the filter are defined by the matrices R and Q, that are the 
covariance matrices of the perturbation and measurement 
noises for what the KF are going to be optimal. 

When the measurement noise is high, the trace of R and 
the elements of Kk will be small. So, the relative weight of yk 
should be reduced in the next estimation step, what makes 
the convergence slow. On the other hand, when the 
measurement noise is small, the trace of R and the elements 
of Kk will be high, ensuring a better confidence in yk and a 
fast dynamic response.  

When the process noise is high, the trace of Q and Pk/k-1 
and the elements of Kk are high, resulting in a large reliability 
for the measurements of yk in the next estimation step. If the 
process noise is small, the trace of Q and Pk/k-1 and the Kk 
elements are small, resulting in a small weight for yk and a 
slow convergence of the algorithm.  

Therefore, as stated earlier, the KF design depends on a 
compromise between desired accuracy and dynamic 
response, what can be achieved by a proper choice of 
matrices Q and R, taking into account input waveform 
distortions and desired characteristics of final applications. 

 

III. THREE-PHASE KALMAN FILTER 

In the same spirit of the single phase model, a set of three-
phase fundamental voltages can also be represented by 
means of a state space model [10]: 

 

    V1(k) = A.V1(k-1) + wk-1 

                              v(k) = B.V1(k) + zk , 
where: 
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V1(k) = 
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  is  a vector  containing  the  three-phase  

 
filtered signals (va1(k), vb1(k), vc1(k)) and an orthogonal 

signal, respective to the phase a (va1⊥(k)), B = 
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v(k) = 
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a
 is a vector with the measured voltages,  wk is 

a 4 x 1 dimension matrix and zk, is a 3 x 1 dimension matrix. 
The instantaneous phase angle can thus be obtained by: 
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and the fundamental frequency f1 can be calculated in the 
same way as in the single-phase KF. 

In case of unbalanced (amplitudes), but symmetrical 
(phase angle) input voltages, such KF model has the 
advantage to be able to identify the positive sequence 
component, in such a way that its magnitude can be 
calculated by: 

 [ ]2
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2
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3
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cba vvvV ++≅+ . (7) 

As well as in the single-phase model, waveform 
distortions will be considered by means of zk. In addition, it 
has been verified that, if Q and R were set to attenuating 
harmonic distortions, the dynamic convergence of the three-
phase model is better than the single-phase one, since, 
statistically, its model has more information than the 
previous. However, it should be considered that its 
implementation complexity is also superior (4 x 4 systems 
instead of 2 x 2). 

IV. SIMULATION RESULTS 

In order to compare different KF´s, some simulations were 
realized whose results are presented in the sequel. The 
sampling frequency fs were chosen to be 12 kHz, what means 
that the number of samples per period N varies with f1 (N = 
200 for f1 = 60 Hz) and P0 was set to Q. In order to find the 
ideal balance between velocity of response and filtering 
quality, different matrices Q and R were tested. The best 
values found are, for the single-phase system: 

Q = 
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and for the three-phase system: 
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,               

These values were found following the suggestion of [4] 
and references therein. Note that the entries of R are much 
greater than the ones in Q, what is the way to attenuate the 
harmonic distortion in zk.  

It is worth mentioning that in order to guarantee the same 
performance, different values of these matrices must be used 
for different voltage levels. 

A. Single-Phase KF 
 

In the figures that follow, four simulation results will be 
discussed (4 different cases):  

 
Case 1 – Sinusoidal voltage with 127 Vrms, 60 Hz and 

phase angle equals to 60° (Fig. 2); 

Case 2 – Voltage with 5% of harmonic distortion in the 
3rd, 5th and 7th harmonic, but with the remaining parameters 
values like in the last example (Fig. 3); 

Case 3 – Voltage like in case 2, but with a sag of 50% 
(Fig. 4); 

 Case 4 – Voltage like in case 2, but with an abrupt 
transition in  f1 from 60 Hz to 59 Hz (Fig. 5). 

 
In Fig. 2, one can see the influence of the initial state of 

the filter (that must be set by the user). In this case, values 
were chosen such that the initial phase of the signal is 0°. In 
the uppermost graphic, the sinusoidal voltage v (output of the 
KF) along with their in-phase (v1) and orthogonal (v1⊥) 
components are presented. Note that the convergence is 
achieved in less than 6 cycles. In the central graphic, the 
corresponding phase � of signal v1 is presented. In the lowest 
graphic, the fundamental frequency f1 calculated as indicated 
earlier and with initial value equals to 60 Hz. The observed 
transient comes from the difference between the real state of 
the system and the one fixed in the algorithm. 

The good filtering quality of KF-1φ can be observed in 
Fig. 3, where case 2 are in force. The Total Harmonic 
Distortion (THD), which would be 8,66% in the modeled 
signal, was reduced to 1,41%. 
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Fig. 2.  KF-1φ: Input Voltages (127 Vrms, 60 Hz, 60°) and filter 

outputs: � e f1. 
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Fig. 3.  KF-1φ: Input Voltage (127 Vrms, 60 Hz, 60°), with 5% of 

distortion in 3rd, 5th. and 7th. harmonics and filter output  f1.  
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Fig. 4 e 5 show the performance of KF-1φ when there are 
abrupt transitions in amplitude and frequency. In the first 
case, estimated voltages converge in 2 cycles while 
fundamental frequency estimate practically does not change. 
In the second case, v1 e v1⊥ follow v while f1 stabilizes in 9 
cycles. Little ripple in frequency (58,98 Hz -59,04 Hz) can 
be observed as the ratio fs/f1 is no longer an integer number. 
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Fig. 4.  KF-1φ: Filter Input and Output Voltages and f1, after a 

voltage sag.  
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Fig. 5.  KF-1φ: Filter Input and Output   f1, after a frequency 

transient. 

B. Three-Phase KF 
 

In the following figures, one shows simulation results for 
the next cases:  

 
Case 1 – Balanced 127 Vrms, 60 Hz sinusoidal three-phase 

voltages with 60° of initial phase angle in phase a (Fig. 6); 
Case 2 – Unbalanced voltages (70% in phase b and 85% 

in phase c), with 5% of 3rd, 5th and 7th harmonic distortion, 
with all the remaining parameters like in case 1 (Fig. 7); 

Case 3 – Balanced Voltages with distortion like in case 2, 
but with a 50% voltage sag (Fig. 8). 

Case 4 – Voltages like in case 3, but with an abrupt 
transition in  f1 (from 60 Hz to 59 Hz (Fig. 9)). 

 
In Fig. 6, again one can see the influence of the initial 

state assumption in the performance of the system (phase a 

with a phase angle of 0°). In the uppermost graphic, the 
sinusoidal voltage va and the in-phase voltage, that comes 
from the filtering (va1) are put together. One can see the 
convergence in six cycles. In the middle graphic, the phase 
angle � of va1 are presented and in the inferior graphic, one 
presents the calculated fundamental frequency f1 (the initial 
frequency assumed to be 60 Hz). Again, the difference 
between the adopted initial state and the real one can explain 
the transient. 
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Fig. 6.  KF-3φ: Balanced input voltages (127 Vrms, 60 Hz, 60° - 

phase a), and outputs va1, � e f1.  

In Fig. 7, a case with unbalanced three-phase voltages 
with 8,66% of DHT is analyzed. Once more, one can see the 
convergence in six cycles (with the same initial state in the 
KF) and a distortion reduction to 0,79% of DHT, what shows 
the good filtering capability of the algorithm. Besides that, 
the amplitudes of va1 and of the others resulting signals are  
179,6x(1+0,7+0,85)/3 ≅ 152,66 V, what is the mean value of 
the measured amplitudes that, in this case, coincides with the 
positive sequence. 
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Fig. 7.  KF-3φ: filter response in a situation with unbalanced and 

distorted voltages.  

Fig. 8 and 9 show the performance of the KF-3φ when the 
power system voltage signals present an abrupt amplitude 
and frequency variations. In the case of amplitude variation 
(Fig. 8 ), the filtered voltages converge in 1 cycle while the 
frequency practically does not alter. In case of frequency 
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variation, f1 stabilizes in about 9 cycles. One can see, in this 
case, a little ripple (58,98 Hz -59,04 Hz), what comes from 
the fact that fs/f1 is no longer a integer number. 
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Fig. 8.  KF-3φ with distorted voltages and voltage sags. 
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Fig. 9.  KF-3φ with distorted voltages and abrupt frequency 

changes.  

V. EXPERIMENTAL RESULTS 

The single-phase algorithm was tested in a data 
acquisition and processing system based on the concept of 
virtual instrumentation [11]. The experimental apparatus was 
composed by an eight-channel simultaneous acquisition 
board with 16-bit AD converter (PCI-6143 from National 
Instruments - NI) with maximum frequency of 200 kHz. The 
analog signals were measured by current and voltage Hall-
effect sensors (LV-25P and LA-55P from LEM) and the 
computational part was implemented in a Pentium 4 desktop 
with LabView 7.1 platform (from NI). The voltages were 
generated by a programmable three-phase generator from 
California Instruments, model 4500iL.  
 

Initially, the KF-1φ algorithm was tested for different 
voltage conditions. In the uppermost graphic of Fig. 10, one 
has a sinusoidal 127 Vrms, 60 Hz input voltage v with 10% of 
3rd, 5th and 7th harmonic distortion. In the middle graphic, one 
has the estimated and filtered voltage v1. In the lowest 

graphic, one shows the estimated fundamental frequency f1 
[Hz]. 
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Fig. 10.  KF-1φ: Input voltage (127 Vrms, 60 Hz), with 10% of 3rd, 

5th and 7th harmonic distortion and influence in the frequency. 

In Fig. 11, the input voltage suffers a voltage sag of 50%, 
but despite that, the algorithm manages to converge in about 
one cycle. In Fig. 12, the amplitude remains constant but 
there is an abrupt change in the fundamental frequency from 
60 to 59 Hz. There is no change in the filtered voltage, but 
the frequency stabilizes in about 10 cycles. 
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Fig. 11.  KF-1φ: Sag of 50% in the input voltage. 
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Fig. 12.  KF-1φ: Abrupt change in  f1 from 60 Hz to 59 Hz. 
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VI. CONCLUSION 

The Kalman Filter was applied in this work as a way to 
estimate the fundamental component from a distorted signal 
like those present in a power system. One could then 
estimate the fundamental frequency of the signal f1. The filter 
was designed by adopting a stochastic state-space model for 
the power system voltage, what is a very reasonable 
hypothesis. The performance of the zero-crossing detection 
method, based on the estimated voltage, was shown to be 
very effective as a way to calculate the fundamental 
frequency, even in the presence of harmonic distortion.   

Complex matrix calculations are not a concern here 
because their dimensions never exceed two, in the single-
phase case (and four, in the three-phase case). It makes 
possible to do calculations elementwise. In the three-phase 
case, the algorithm also estimates the mean-amplitude in the 
presence of unbalanced voltages, what could be used, in 
some cases, in place of a positive-sequence detector [10]. It 
was also shown that, setting adequate values to Q and R, the 
performance of the three-phase could be better than the 
single-phase case. 

Comparing with other synchronization algorithms, like 
those in [9,10] and/or those in [5-8,12-14], as to say the PLL-
based and the DFT-based, one can say that the proposed 
Kalman filter based algorithm is 1) so precise in steady-state 
as the others two; 2) as fast and sensible to voltage 
distortions as the PLL-based and 3) computationally simpler 
than other Kalman-based algorithms presented in literature. 

Therefore, this algorithm, along with the PLL-based and 
the DFT-based, are interesting alternatives in applications 
that need synchronization with the power system as well as 
in power quality analysis. 
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