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Abstract— This paper presents the design of a flatness-
based controller for a line conditioner for a single phase AC
system. Some basics will be given on the concept of flatness-
based control. Reconstructors for model parameters will
be derived utilizing an algebraic parameter identification
algorithm. A flatness-based controller for the capacitor’s
voltage of the line conditioner will be compared with a
linear proportional-integral-derivative controller with a
first-order delay element (PIDT1) for the same purpose
by simulation.

Keywords— AC/AC, algebraic parameter identification
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I. INTRODUCTION

The growing amount of non-resistive, nonlinear loads leads
to a couple of problems. For instance, the weaker the supply
grid the larger the voltage’s distortions caused by a non-
sinusoidal load current. More and more, passive and active
power filters compensate nonlinear loads in order to fulfill
the increasingly strict regulations. Nonetheless, the supplied
voltage deviates more and more from the sinusoidal shape.
Therefore, so called line conditioners were supposed to im-
prove the total harmonic distortion (THD) of the supplied
voltage for sensitive loads.

One topology was published in [6]. It uses the line voltage
directly as input voltage of a buck topology in order to
generate the necessary voltage for improving the THD of the
voltage provided to the load. This topology and a modification
was further studied e. g. in [7] and [8], respectively. The
analog control of a demonstrator at the Power Electronics
Institute is currently replaced by a digital one. Other control
algorithms can easily be applied to improve the dynamics of
the voltage regulation. One possible approach—the flatness-
based control—is introduced in this paper and a controller is
designed in order to show the attainable improvements of the
control by using this control method.

The concept of differential flatness is explained in [1].
It is based on a mathematical property of the system. The
flatness based control uses it to calculate analytically the
system’s input needed to follow a desired trajectory for the
chosen (flat) output of the system. A feedback controller has
to be designed to stabilize the trajectory around the nominal

trajectory. Already used in the field of mechanical engineering,
this approach is still quite unknown in electrical engineering
and especially in power electronics. A more comprehensive
publication in this field is [4]. There this method is applied to
basic DC/DC converters.

The paper is organized as follows: Necessary basics of
the flatness based control will be given and a controller will
be designed in Section III after the modeling in Section II.
The knowledge of main parameters of the system’s math-
ematical model is essential for the quality of the control
which can be attained. Therefore, an algebraic identification
algorithm is used in Section IV to calculate the unknown
parameters. Simulation results from a switched model under
MATLAB/Simulink/PLECS are finally presented in Section V.

II. CIRCUIT AND MODEL

The following Fig. 1 shows the ideal circuit of the indirect
line conditioner used for the investigations. The output of a
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Fig. 1. Lossless electric circuit of the indirect line conditioner

buck converter is connected via a transformer in series between
source and load. The input voltage of the buck is the time-
varying line voltage vin. It is connected by a full bridge al-
lowing the generation of positive and negative voltages across
the output capacitor independently of the present polarity of
vin. The buck converter shall provide the necessary voltage
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to cancel the harmonic content of vin. The control goal is a
sinusoidal voltage vout across the load R.

A. Switched model

The system is governed by the following system of ordinary
differential equations using the definitions of the currents and
voltages as shown in Fig. 1

L
diL
dt

= −vC + qvin , (1a)

C
dvC

dt
= iL −

vin + vC

n1

n1R
, (1b)

with the switching function—and input of the system—q ∈
{−1, 0, 1} and the winding’s ratio n1 = vprim/vsec of the
transformer. The quantities vin, vout = (vin + vC/n1) and iL
are assumed to be measured.

B. Continuous model

A continuous model is needed in order to be able to use
the property of differential flatness. The model (1) will be
averaged over one switching period Ts by leaving Ts tend
to zero. It is shown in [9] that there is always a sufficient
small switching period, for which the deviations between
the responses of the original (switched) system, and those
of an averaged or continuous model, under identical initial
conditions, remain arbitrarily close to each other.

The equivalent switching function d can take values in the
interval [−1, 1]. It will be used as the time varying duty ratio
in the implementation with finite switching frequency in order
to generate the switching signals for the full bridge. The model
used for the investigations reads

L
diL
dt

= −vC + d vin , (2a)

C
dvC

dt
= iL −

vC

n2
1R

−
vin

n1R
(2b)

using the same notation for the averaged system variables as
in (1).

III. FLATNESS-BASED CONTROL

A dynamical system is (differentially) flat if:
1) Every component of y may be expressed as a function of

the system variables and of a finite number of their time
derivatives.

2) The components of y are differentially independent,
i. e., there is no differential equation of the form
R(y, ẏ, ÿ, . . . ,y(χ)) = 0 only in y .

3) Every system variable may be expressed as a function of
the components of a finite set y = (y1, . . . , ym) and of a
finite set of their time derivatives. The tuple y is called
a flat output.

The number of components of the flat output is equal to the
number of input variables of the system.

As already mentioned, the switched part of the topology
can be compared with a buck converter. Its flat output is the

capacitor voltage [4]. Therefore the flat output is defined as
y = vC here too. Its time derivatives read as

ẏ =
iL
C

−
vC

n2
1RC

−
vin

n1RC
(3a)

ÿ =
1

C

diL
dt

−
1

n2
1RC

dvC

dt
−

1

n1RC

dvin

dt
(3b)

= −
1

n2
1RC

dvC

dt
−

vC

LC
+

d vin

LC
−

1

n1RC

dvin

dt

If the defined output is a flat output, all system variables and
the system’s input can be expressed in terms of y, ẏ and ÿ.
This is the case for the model and the output y

vC = y (4a)

iL = Cẏ +
y

n2
1R

+
vin

n1R
(4b)

d =
LC

vin

ÿ +
L

n2
1Rvin

ẏ +
1

vin

y +
v̇inL

n1Rvin

. (4c)

Hence, the capacitor voltage vC is one possible flat output
of the system in the sense of [1]. Notice that vin = 0 is a
singular point for the chosen system’s input. The system is
not controllable at this point. However, the system is only for
a very short time at this point in regular operation and passes
it without getting unstable.

The control goal is a sinusoidal voltage across the load
vout(t) = vref (t) = V̂ref sin (ωN t). The desired trajectory yd

of the flat output can easily be formulated yd = n1(vref −vin).
The time derivatives are given by ẏd = n1(v̇ref − v̇in) and
ÿd = n1(v̈ref − v̈in). The derivatives of vref can analytically
be calculated, but v̇in and v̈in are unknown quantities. An
algebraic approach will be used in Subsection IV-B to estimate
them.

A. Exact feedforward linearization

Assuming that v̇in and v̈in are estimated correctly, exact
feedforward linearization becomes possible [5]. Asymptotic
convergence towards the desired trajectory can be forced
on the system by introducing a stable error dynamics—the
following oscillator (for (yd − y)):

0 = ÿd − ÿ + kd(ẏd − ẏ) + kp(yd − y) , (5)

with the constant parameters kd, kp ∈ R, kd, kp > 0. This
equation is solved for ÿ and the result is used in (4c)
where y and ẏ are substituted by their desired values yd and
ẏd, respectively. The variable now gives information how to
choose the equivalent switching function to obtain trajectory
tracking

d =
LC

vin

ÿd +
L

n2
1Rvin

ẏd +
1

vin

yd +
v̇inL

n1Rvin

+ k∗

d

ẏd − ẏ

vin

+ k∗

p

yd − y

vin

,

(6)

with k∗

d = LCkd and k∗

p = LCkp .
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B. Stability

The stability of the proposed controller has to be shown.
The differential equations of the system in its desired operating
point read

L
diL,d

dt
= −vC,d + dd vin , (7a)

C
dvC,d

dt
= iL,d −

vC,d

n2
1R

−
vin

n1R
, (7b)

with

dd =
LC

vin

ÿd +
L

n2
1Rvin

ẏd +
1

vin

yd +
v̇inL

n1Rvin

.

The error is defined by ỹ = (yd−y) . Subtracting (2) from (7)
results in the error system

L
d̃iL
dt

= −ṽC + d̃ vin , (8a)

C
dṽC

dt
= ĩL −

ṽC

n2
1R

. (8b)

The method of Ljapunov is used to show the stability. The
following positive definite Ljapunov-function is chosen

V =
1

2

(

Lĩ2L + Cṽ2
C

)

. (9)

After one differentiation with respect to time of (9) and
substituting (8) it follows

V̇ = −
ṽ2

C

n2
1R

+ vind̃ ĩL , (10)

which has to be negative definite.
The input voltage vin can take positive and negative values

over a wide range. Therefore it is useful to cancel it. The
controller d̃ is chosen d̃ = −kĩL/vin leading to a stable error
system.

The current’s error ĩL can be expressed using (8b) as ĩL =
C ˜̇y + ỹ/n2

1R . This leads to

d̃ = −

(

kC
˜̇y

vin

+
k

n2
1R

ỹ

vin

)

(11)

which are the two assumed feedback parts in (6). Now
conditions are available to choose the values of k∗

d and k∗

p .

IV. OBSERVER DESIGN

A. An algebraic reconstructor for the load

It is possible to design an algebraic reconstructor [2], [3]
for the load which calculates the resistance of the load in an
algebraic manner. The used algebraic identification algorithm
is still quite unknown in power electronics. It enables a fast
on-line identification of parameters without the necessity of a
discussion of the stability as for asymptotic observers.

It can be done e. g. by using (2b) and integrate it once over
the interval [t − TB , t]. The capacitor voltage has still to be

substituted by measured quantities vC = n1(vout − vin). The
equation now reads

t
∫

t−TB

Cn1(v̇out(τ) − v̇in(τ)) dτ =

t
∫

t−TB

iL(τ) dτ −

t
∫

t−TB

vout(τ)

n1R
dτ .

(12)

It can now be solved for the unknown parameter R

R =

t
∫

t−TB

vout(τ)

n1
dτ

t
∫

t−TB

iL(τ) dτ − Cn1

[

vout(τ) − vin(τ)
]t

t−TB

. (13)

B. Estimation of the derivatives of the input voltage

The algorithm is based on the one described above. The
signal (here vin) whose derivatives shall be estimated is locally
approximated by a polynomial of desired order

vin(τ) = a0 + a1τ + a2
τ2

2
.

Then the third derivative is v
(3)
in (τ) = 0. This is multiplied by

τ2 and integrated twice for an estimate of the first derivative

t
∫

t−TB

τ∗

∫

t−TB

τ2v
(3)
in (τ) dτ dτ∗ = 0 . (14)

Using partial integration the estimate can be calculated using

ˆ̇vin(t) =
4vin(t)

TB

+
2vin(t − TB)

TB

−
6

T 2
B

t
∫

t−TB

vin(τ∗) dτ∗ .

(15)

This solution can be used to calculate an estimation of the
second derivative. The following equation has to be solved for
this purpose

t
∫

t−TB

τv
(3)
in (τ) dτ = 0 . (16)

Only one partial integration is needed to get the solution

ˆ̈vin(t) =
ˆ̇vin(t) − ˆ̇vin(t − TB)

TB

. (17)

C. Implementation Issues

A ’sliding window’ of the width TB = NTa is used, with
the sampling time Ta and the number N ∈ N of samples
used. This allows to obtain an estimate for every integration
step, or in other words, after every sampling step. Without
loss of precision, only the values leaving and entering the
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’sliding window’ of the integral are considered. Therefore
the computation time is independent of the number N of
samples used. The integral is approximated by a sum using
the trapezoidal rule. So, the values of the measured quantities
inside the ’sliding window’ have to be stored in separate ring
buffers.

In (17) there is no need to use the time window TB .
An estimate ˆ̇vin(t) is available after every sampling step. In
order to prevent the necessity of a ring buffer for ˆ̇vin(t) the
approximation

ˆ̈vin(t) =
ˆ̇vin(t) − ˆ̇vin(t − Ta)

Ta

. (18)

is used requiring only one memory cell.

V. SIMULATION RESULTS

The parameters of the system for the simulations are
V̂ref = 311 V, fN = 60 Hz, fs = 20 kHz, L = 570 µH,
C = 13.3 µF, Ta = Ts/2, TB = 16 Ta and Pout,n = 10 kW
corresponding to Rn = 4.84 Ω. The focus lies on the
following cases:

1) as reference the “fast” PIDT1 controller from [7]
2) d = yd/vin,
3) d = yd/vin + k∗

p(vref − vout)/vin, k∗

p = 21,
4) Equ. (6) with ÿd = k∗

d = k∗

p = 0 and
5) Equ. (6) with ÿd = 0, k∗

d = 0.2 ms, k∗

p = 21 .

Fig. 2 gives an overview of the simulated scenario. The
input voltage vin(t) = vref (t) + ṽ3(t) has a third harmonic
ṽ3(t) = 20 V sin (3ωN t − π/2) from the beginning. A load
step occurs at t ≈ 16.6 ms from R = 2Rn to Rn . At t ≈
25 ms a step of the maximum input voltage takes place. Now
the input voltage is vin(t) = 1.2 vref (t) + ṽ3(t) .
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Fig. 2. vin (black), vout (red) and vC (blue) of case 5

First, the quality of the feedback control for sudden changes
is demonstrated in Fig. 3 for cases 1 and 5 with the step of
the input voltage at t ≈ 25 ms. Then, Fig. 4 compares the
tracking error in steady state of cases 1 and 5 for the interval
0 < t < 16.5 ms. At last, Fig. 5 looks more closely at the
tracking behavior of different flatness-based controllers for the
interval 8.3 ms < t < 16.5 ms.
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Fig. 3. Transient of the error voltage (vref −vout) for a 20 % input voltage
step of case 1 (red) and case 5 (black)

As one can see by the error voltage (vref − vout) in
Fig. 3, the parameters of the flatness-based controller were
chosen to closely follow the waveform of the PIDT1 controller.
Therefore, both approaches show nearly the same dynamical
response. To be honest, it is very hard to beat a good PID
control for the linear buck converter which is the switching
part of this topology. But a difference can be seen after the
transients are settled. This becomes more obvious if one looks
at Fig. 4.
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Fig. 4. Error voltage (vref − vout) in steady state of case 1 (red) and case
5 (black)

The error voltage (vref − vout) in steady state of case 1 is
approximately 100-times larger then the error voltage of case
5. Especially, the PIDT1 controller has a problem to follow the
reference voltage after the zero crossings of the input voltage.
This point is better treated by the flatness-based controller.

A flatness-based controller consists usually of two parts.
First, a feedforward control which drives the system closely
to a desired trajectory, taking the modeled system’s dynamics
into account. Second, a feedback control which stabilizes the
system’s trajectory around the desired one. Therefore the zero
crossings are already taken into account at the calculation
of the system’s input from the desired trajectory. The con-
sequences can be seen in Fig. 5.
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Fig. 5. Error voltage (vref −vout) in steady state of case 2 (blue), 3 (green),
4 (red) and 5 (black)

The error voltage of case 2 (blue curve) can be interpreted as
a small phase delay. But compared with the line voltage and
the error voltage of case 1, the error of about 1 V is small.
The simple usage of the proportional part of the feedforward
control already improves the tracking significantly compared
to case 1. The error can be decreased by a proportional
feedback controller like the waveform of case 3 (green curve)
shows, but the characteristic as a phase delay holds.

The feedforward control of case 4 (red curve) with propor-
tional and differential parts centers the error voltage around
zero—the tracking is very good. The maximum error is de-
creased again by the feedback of both parts of the feedforward
control as the waveform of case 5 (black curve) shows. The
maximum error voltage is only about 0.15 V for this case.

VI. CONCLUSIONS

The paper presented the design of a flatness-based controller
for the capacitor’s voltage of a line conditioner. The stability
of the proposed controller was shown. Model-based control
methods motivate the usage of estimated quantities for the
uncertain main parameters of the system. An algebraic pa-
rameter identification algorithm was used in order to calculate
this unknown parameters.

The simulation results showed the improvements in the
tracking of the desired trajectory by using the flat output and

its first derivative for feedforward and feedback control. In
this simple case the flat output is directly measurable—it is
the capacitor’s voltage of the buck topology. Its first derivative
is the capacitor’s current. Therefore the PIDT1 controller for
the capacitor’s voltage can do a good part of the job. It already
handles sudden changes of the load or input voltage very well.

But it can not do the same as the flatness-based controller
because first, it lacks the feedforward control and with it
the inherent handling of the modeled system’s dynamics. The
consequence was visible at the error voltage in steady state.
And second, the identification of two important parameters for
the calculation of the desired trajectory provides knowledge to
further improve the control.
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