
BUCK CONVERTER WITH VARIABLE INPUT  
VOLTAGE FOR PHOTOVOLTAIC APPLICATIONS 

 
Marcelo Gradella Villalva , Ernesto Ruppert Filho 

Universidade Estadual de Campinas (UNICAMP) 
Campinas - SP- Brasil 

mvillalv@dsce.fee.unicamp.br , ruppert@fee.unicamp.br 
 
 

Abstract – This paper describes the modeling and 
control of a buck converter with variable input voltage. 
Some DC-DC converters for photovoltaic applications 
require that the input voltage be controlled while the 
output voltage is constant. This control is not so obvious 
and requires converter modeling and regulator design. 
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I. INTRODUCTION 

Modeling and control of buck converters are two topics 
well known in the literature, which rise no challenges for 
researchers and engineers. However when the buck converter 
is used in photovoltaic applications the control system 
becomes complicated and requires modeling and controller 
design not readily available in the technical literature. 

The purpose of this paper is to overcome the lack of 
information about modeling and controlling the input voltage 
of the buck converter when the output voltage remains 
constant.  

The following sections will show the converter modeling 
with the state-space averaging method and will present the 
regulator design in details. The authors expect the readers 
will profit of this detailed analysis of the regulated-input 
buck converter and its control system. 

Simulations are used to validate the buck converter 
linearized model and to test the performance of the designed 
closed-loop controller.  

 

II. BUCK CONVERTER IN PV APPLICATIONS 

Fig. 1 shows the simplified model of a photovoltaic (PV) 
array connected to a buck converter. The output voltage of 
the PV array is VPV. This voltage must be controlled in order 
to keep the array operation at the maximum power point, 
which is accomplished by a power tracking algorithm (this 
subject is beyond the scope of this text). The maximum 
power point tracking (MPPT) algorithm provides the 
reference VPV* for the buck converter. The buck converter 
sets the input voltage (which is the output voltage of the PV 
array) to the desired value while its output voltage is fixed. 

In most typical applications of PV arrays the output of the 
array is directly connected to a load or to a battery with an 
approximately constant voltage. Although this kind of system 
is costless, the lack of the array output voltage control 
prohibits the system to operate at with maximum efficiency, 
hence energy is wasted. If a power electronic converter [1] is 
used to interface the PV array and the load (e.g. a battery that 
feeds a DC load or a DC-AC conversion stage) the best 

performance of the PV array may be achieved, hence the 
energy utilization is optimized. 

This paper proposes a simple and also costless buck 
converter that may be used in PV applications where VPV > 
Vo. For example, a PV cell whose voltage output varies 
between 20 V and 35 V may be interfaced to a 12 V battery 
by the buck converter.  
 

 
 

Fig. 1: PV array connected to a buck converter with 
constant output voltage. 

 
Fig. 2 shows the buck converter. We can notice that, 

differently of conventional converters, the buck circuit of this 
figure has a constant output voltage and its input voltage 
depends on the output of the PV array. The voltage Vo may 
be kept constant by a battery or by another electronic power 
converter, as mentioned before. 

  
Fig. 2: Buck converter with variable input voltage. 

 

III. SYSTEM MODELING 

A. PV array 
 

The simple PV array model [2,3] seen in Fig. 1 may have 
its diode removed in order to make easier the modeling 
process of the PV-buck system. In this case we consider that 
the PV array operates as a constant current source. However 
in a real situation the array will be forced to operate at the 
boundaries of the constant current and constant voltage 
modes if a maximum power tracker is employed. With this 
simplification the PV array may be represented by the simple 
Thévenin’s equivalent circuit of Fig. 3. It is easier to use only 
one equivalent resistance RTH instead of using the shunt (RSH) 
and series (RS) resistances of the original PV array model of 
Fig. 1. By using any of these models, with the current source 
IPV or with the equivalent Thévenin’s voltage VTH, only one 
energy source will appear in the averaged model (current or 
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voltage source). These two models may be chosen arbitrarily 
and the following relations are valid. 
 

RTH = RS + RSH                                       (1) 
 

VTH = IPV RSH                                                            (2)           
 

 
Fig. 3: Thévenin’s equivalent circuit of the PV array operating as a 

constant current source. 
 

B. Buck converter 
 
1) State equations  
 
The transistor of the buck converter of Fig. 2 switches 

according to the gate signal provided by the control system. 
When the switch is closed during the time interval d.T the 
buck converter constitutes the circuit of Fig. 4a. When the 
transistor is open during the time interval (1-d)T the circuit 
assumes the form of Fig. 4b. f =1/T is the switching 
frequency of the buck converter and d is the transistor duty 
cycle. 

 
Fig. 4: (a) Buck converter when the transistor is conducting.  

(b) The same circuit when the transistor is open. 
 
Each circuit of Fig. 4 may be described as a set of 

differential equations with two state variables: the capacitor 
voltage v and the inductor current i.  

Equations (3) and (4) hold when the switch is closed. 
 

Inductor:                    0Vv
dt
diL −=                               (3) 

 

Capacitor:            i
R
V

R
v

dt
dvC

TH

TH

TH
−+−=                     (4) 

 
Equations (5) and (6) hold when the switch is open. 

 

Inductor:                      0V
dt
di

L −=                               (5) 

 

Capacitor:                
TH

TH

TH R
V

R
v

dt
dvC +−=                     (6) 

 
Equations (3) – (6) may be written in the state space form, 

as shown in equations (7) and (8). 
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Matrices A1, B1 and A2, B2 are used to determine the A 

and B matrices of the averaged state equation. According to 
the state-space averaging method [4,5] we can write the 
averaged state equation (9), which is the weighted sum of 
equations (7) and (8). It is possible to write equations (10) 
and (11) because in every switching interval T of the buck 
transistor equation (7) is valid during d.T and equation (8) is 
valid during (1-d)T. If the switching frequency of the 
transistor (1/T) is sufficiently high the averaged equations (9) 
– (11) may be used to describe the low frequency behavior of 
the circuit (with average currents and voltages). Vectors x 
and u in equation (9) contain average states and inputs of the 
circuit. Variables <i> and <v> are average states and V0 and 
VTH are DC values (we assume the input and output voltages 
have no AC components). 

 
uBxAx ⋅+⋅=&                                 (9) 

 
)1(21 dd −⋅+⋅= AAA                      (10) 

 
)1(21 dd −⋅+⋅= BBB                      (11) 
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2) DC values 
 
Making 0=x& , which is true when all transients have 

faded and the buck converter is in steady state, we obtain the 
DC equations (13) and (14) of the PV-buck system.  
 

UBXA0 ⋅+⋅=                                  (13) 
 

 UBAX -1 ⋅⋅−=                                  (14) 
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From (14) we obtain (15), where I and V are the DC 
(steady state) values of <i> and <v>. 
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The expression of V found in (15) is the well-known static 

input-to-output ratio of the buck converter.  
 
3) Small signal analysis 

 
In order to develop the control system of the buck 

converter it is necessary to obtain a converter model 
linearized at a chosen operating point. This linear model, 
which is valid for small signal variations, provides a linear 
transfer function that can be used in the design of the closed-
loop control system. 

The buck converter in this paper works in the voltage-
control mode. The current-programmed mode could also 
have been considered, but it is not necessary unless we need 
to directly control the inductor current for any special 
purpose.  

Generally the duty cycle d is used as the control variable 
in voltage-mode DC-DC converters. As we are concerned 
about the input voltage control, however, it is more 
convenient to obtain a model equation whose control variable 
is d ′ , the complement of the transistor duty cycle given by 
equation (16), since positive variations of d produce negative 
variations of v.  

 
 dd −=′ 1                                    (16) 

 
Let’s make dDd ′+′=′ ˆ , where D′  is the DC value of d ′  

and d ′ˆ  is a small signal AC perturbation. We wish to obtain 
a model that describes the behavior of the converter when 
small variations of the control variable occur, i.e. a linear 
model of the buck converter for the response to d ′ˆ  near the 
operating point D′ . Let’s also make xXx ˆ+= , where x is 
the averaged state vector, X contains the DC steady state 
values (I and V) and x̂  represents small state disturbances 
near the operating point X. Similarly we can add small 
perturbations to the input u as shown in equation (19), but in 
this modeling we have assumed that û = 0. 

 
 dDd ′+′=′ ˆ                                        (17) 

 
 xXx ˆ+=                                         (18) 

 
uUu ˆ+=                                         (19) 

 
The averaged equation of the PV-buck system may be 

written in function of the control variable d ′ , as equation 
(20) shows. 

 
u A Ax  A Ax 2121 ⋅′⋅+′⋅+′⋅+′⋅= }d)d-({}d)d-({ 11&     (20) 

 

Equation (21) is obtained by substituting (17) – (19) into 
(20), by ignoring the nonlinear terms and by applying the 
Laplace transform. 
 

( ){ }UBBXAAxAx 2121 )(ˆˆˆ +−++−′+= (s)d(s)(s)s    (21) 
 

From equation (21) we can obtain equation (22), which 
expresses the vector transfer function G(s). 
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From (22) the transfer functions )(ˆ/)(ˆ)( sdsisGI ′= and  

)(ˆ/)(ˆ)( sdsvsGV ′=  are obtained. GV(s), the transfer function 
we are interested in, describes the response of the buck 
converter input voltage to small variations of d ′ around the 
operating point V=V0 /D, where D = 1- D′ . 

With some simple mathematical manipulations we can 
find the expression of the transfer function GV (s) seen in 
equation (23), where I and V are the DC steady state current 
and voltage from equation (15). 
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IV. NUMERICAL EXAMPLE 

A. Transfer function 
 
Once we have found the transfer function GV(s), which 

gives the small signal response of the input voltage to the 
control variable d ′ , let’s  analyze a numerical example. 

The following parameter values – Tables 1 and 2 – will 
allow us to obtain a numerical transfer function through 
which the dynamic response of the converter may be studied. 

 
Table 1 

 
PV Cell 

RSH  13.5620 Ω 
RS   0.2670 Ω 
IPV  19.2000 A 
VTH 260.3904 V 
RTH  13.8290 Ω 

 
Table 2 

 
Buck Converter 

L  0.0020 H 
C  0.0015 F 
V0 15.0000 V 
D  0.5000 
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Equation (24) shows the numerical transfer function of the 
buck converter with the PV array connected to its input. 

 

4573002051494
420792160

2 .s.se.
.s.(s)GV
++−

+
=                  (24) 

 

B. DC characteristic 
 
Fig. 5 shows the static transfer characteristics of the real 

converter and of the linear model GV(s). This figure clearly 
shows that the transfer function is a linear model of the 
converter around the chosen operating point 5.0=′D .  

 

 
 

Fig. 5: Static characteristics of the real converter and of the linear 
model – transfer function GV(s). 

 
Fig. 5 shows that the choice of 5.0=′D  is adequate 

because this is the midrange of the control variable and 
mainly because the derivatives of the static input voltage 
with respect to the control variable may become extremely 
low or extremely high as the operating point gets farther 
from 5.0=′D . 

C. Open-loop dynamic response 
 
Fig. 6 shows the open-loop step response of the real 

system and of the linear model GV(s). They are almost 
identical except at the higher peaks where the model error is 
bigger. 

 

V. CLOSED-LOOP CONTROL SYSTEM 

Fig. 7 shows the feedback closed-loop control system used 
to control the input voltage of the buck converter. As stated 
earlier the output of the PV array, whose voltage is VPV, is 
connected to the input of the buck converter. 

In the scheme of Fig. 7 GC(s) is the controller transfer 
function, GV(s) is the converter transfer function and H(s) is 
the feedback transfer function. As we are focusing on the 
control theory and on the dynamic analysis of the converter, 
the gain of the pulse-width modulator (PWM) that controls 
the switch of the buck converter does not appear in the  
scheme  of  Fig. 7. As the plant input is the control variable 
d ′ , the PWM is inherently modeled and its gain is unit. 

The loop gain is Gc(s)F(s), where F(s) = GV(s)H(s). For 
example let’s make H(s) = 0.02, which corresponds to a 

voltage transducer with 1/50 conversion ratio and negligible 
dynamic characteristic.  

 

 

 
 

Fig. 6: Open-loop step response of the system composed of the PV 
array and the buck converter with constant output voltage. 

 
 

 
 

Fig. 7: Closed-loop control system for the buck converter. 
 

A. PID regulator 
 

This section shows the tuning process of the proportional 
integral derivative (PID) regulator used in the control system 
of the buck converter. The derivative compensator helps to 
improve the phase margin of the closed-loop system and 
consequently to improve the dynamic response and stability. 
The proportional compensator is used to increase the 
bandwidth of the system, which allows fast transient 
response. The integral compensator is necessary to warranty 
low steady-state error in the input voltage of the buck 
converter. 

1) Proportional compensator 
 
Fig. 8 shows the frequency response of F(s). From this 

bode plot we can find the first-order approximation of the 
open-loop system by using the two asymptotes. This 
graphical method provides the open-loop cut-off frequency 
of the approximated first-order system, which is 0ω . The 
approximated first-order transfer function is F1(s) in equation 
(25), where GDC is the DC gain of F(s). 

 

0
1 1 ωs

G
(s)G DC

V +
=                                (25) 

 
For high frequencies near and above 0ω  the transfer 

function of equation (25) may be approximated as F1(s) in 
equation (26). 

0
1 ωs

G
(s)F DC≈                                   (26) 

 
The modulus of the approximated transfer function of 

equation (26) may be written as 1F  in equation (27). 
 

V 

DD −=′ 1  
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0
1 ωω

DCG
F ≈                                   (27) 

 
The purpose of the proportional compensator is to 

displace the bode plot vertically in order to set a new cross-
over frequency for the closed-loop system, as Fig. 8 shows. 
By multiplying function F(s) by a factor KP the bode plot is 
displaced upward and Cω  is the new cross-over frequency. 

From equation (27) we can write an expression for KP 
with the desired Cω , equation (28). 

 

DC

C
P G

K
0ω
ω

=                                   (28) 

 
For the system studied in this paper, with the parameters 

given in Tables 1 and 2, we find srad /4000 ≈ω  and GDC = 
1.2. Let’s design the closed-loop system for a cross-over 
frequency fC = 1500 Hz, ωC = 9.4248e+003 rad/s. This 
results KP = 19.6350. Fig. 8 shows the bode plot of F(s)KP = 
GV(s)H(s)KP. We can see that the cross-over frequency is ωC 
= 8.7354e+003 rad/s, fC = 1.3903e+003 Hz, very close to the 
desired frequency. This shows that the approximations made 
in equations (26) and (27) are reasonably good for practical 
purposes. 

 

2) Integral compensator 
 

The next step is to add a pole at the origin and a zero at an 
arbitrary low frequency so that the closed-loop system will 
have an infinite DC gain, thus allowing null steady state error 
for step inputs. The transfer function of the integral 
compensator is given by equation (29). 

 
 

s
s

s
G II

I
ωω +

=+= 1                                         (29) 

 
A good choice for the zero frequency is ωI = 10 rad/s, 

which is much lower than ωC. So the integral compensator 
will actuate at DC and low frequencies and will have 
practically no effect at high frequencies. Fig. 9 shows the 
bode plot of F(s)KP GI(s).  

 

3) Derivative compensator 
 

Finally the derivative compensator can be used to improve 
the dynamic response by increasing the phase margin. The 
derivative transfer function GD(s) is given by equation (30). 
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=                              (30) 

 
The transfer function GD(s) adds a pole and a zero to the 

system. The zero may be arbitrarily placed below the cross-

over frequency ωC. Let’s say that ωZ = ωC - Δω, where Δω 
must be chosen in order to achieve the desired phase margin 
reduction. After placing the zero we must choose the pole 
frequency so that the maximum phase displacement occurs 
exactly at ωC. From the control systems theory [6,7] we 
know that 

PZC ωωω ⋅= , so we can write equation (31). 
 

ZCP ωωω 2=                                   (31) 
 

The derivative gain KD must be chosen so that GD(s) does 
not cause any gain increase to the compensated system, as 
the cross-over frequency has already been determined by the 
proportional gain KP. The gain KD is given by equation (32). 

 

PZDK ωω=                                 (32) 
 
 

 
 

Fig. 8: Frequency responses of F(s) and F(s)KP. 
 
 

 

 
 

Fig. 9: Frequency response of F(s)KPGI(s). 
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For the system studied in this paper, with the parameters 
of Tables 1 and 2, with Δω = 3000 rad/s, we have: ωZ = 
5.7354e+003 rad/s, ωP = 1.3305e+004 rad/s, KD = 0.6566. 
Fig. 10 shows the Bode plot of the system loop gain with the 
addition of the derivative compensator, where we can notice 
that the phase margin is improved without any changes to the 
magnitude of the frequency response, i.e. the previously 
determined cross-over frequency remains fixed even with the 
addition of the derivative compensator GD(s). 

 
 

 
 

Fig. 10: Frequency response of F(s)KPGI(s)GD(s). 
 

4) Regulator transfer function 
 
The desired PID regulator transfer function is finally 

given by equation (33). 
 

)()()( sGsGKsG DIPC ⋅⋅=                        (33) 

 
 

Fig. 11: Responses of the closed-loop system to input steps  
at t = 0 s, t = 0.1 s, t = 0.2 s and t = 0.3 s. 

 

VI. RESULTS 

With the regulator designed in the previous section the 
buck converter connected to the PV array attains fast 
transient response, negligible steady state error and excellent 
stability (assured by the large phase margin of the 
compensated system). Fig. 11 shows the step responses of a 
simulated converter and of the closed-loop transfer function 
of equation (34). 

 
 { }(s)(s)H(s)GG(s)G(s)G CVVCL += 1            (34) 

 

VII. CONCLUSIONS 

This paper has shown how a buck converter with input 
voltage control is modeled with the state space averaging 
method. Very few papers in the literature deal with the input 
control of DC-DC converters. The detailed modeling process 
presented here is rarely found elsewhere. Another 
contribution, although minor, is the modeling with the 
control variable d ′  instead of d. This paper has also 
presented very comprehensive instructions for the design of 
the PID regulator used in the closed-loop control system of 
the buck converter.  

The step responses presented in Fig. 6 show that the linear 
model exactly describes the behavior of the real system near 
the operating point. The step responses of Fig. 11 show that 
the closed-loop system of Fig. 7 works perfectly with the 
designed PID compensator.  
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