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Abstract— This paper presents an FPGA implementation of a
flexible SVPWM (F-SVPWM) control strategy for three-phase
motor drive systems. Instead of traditional strategies, it uses a
flexible-vector sequence scheme which allows to apply voltage
vectors in any desired order. In addition, the proposed scheme
can reduce the load common mode voltage and can minimize
the harmonic distortion of the load phase currents. To achieve
these improvements, we developed an optimized dedicated single
processor. The proposed F-SVPWM was simulated in the Altera
Quartus II environment and then verified experimentally using
an Altera Cyclone II EP2C35 prototype board.

I. INTRODUCTION

The Space Vector Pulse Width Modulation (SVPWM) is
one of the most popular technologies in the AC servo drive
systems [1]. Its implementation is normally based on Micro-
controllers (MCUs) or Digital Signal Processor (DSP) [2]. The
former is widely employed due to easy of use and flexibility,
nevertheless the speed is very limited. The later is often used
to increase the switching frequency. However, both of them
suffer some disadvantages, such as long development period
and large use of CPU. The realization of SVPWM in a FPGA
provides many benefits, e.g. shorter design cycle and fair
cost. The reconfigurable hardware and the fast circuit response
(due to the simultaneous instead of sequential execution) are
additional advantages of FPGA based designs.

Although there are others SVPWM realizations based on
FPGA, this new design offer more flexibility when compared
to the standard techniques. Dead time and overmodulation
is considered in [3], but all the parameters necessary for
its operation are stored in ROM memory. This is not good
solution for real applications, since reprogramming the device
is necessary. The SVPWM designs presented in [3], [4], [5]
and [6], it is impossible to produce the vectors sequence in a
desired order. They always apply the null vectors as the same
way, according to asymmetrical or symmetrical mode.

Despite the fact that standard PWM techniques are very
used in many applications in industry, they generate common-
mode voltages, which disturbs the electrical machines con-
nected to the power lines, causing bearing and seal deterio-
ration [7]. The common-mode currents also cause activation
of ground fault detection circuits, electromagnetic interference
and heat the conduits it through. In the literature, there are
many ways to eliminate or at least reduce the common-mode
voltage ([8], [9] and [10]) . In [11], the authors have proposed
the utilization of a new machine drive configuration (with four-
phase) that permits to eliminate the common-mode voltage. In

this case, the SVPWM employed to control the power switches
of the four-phase inverter is a slightly different from the usual
realizations. It should to allow changes in the sequence of
output vectors, periodically. This technique is also applied in
six-phase inverters and six-phase induction motor.

In this paper, we propose a flexible SVPWM (F-SVPWM)
based on FPGA for a three-phase motor drive system. It
has an input parameter which defines the output sequence of
vectors application. It is important to notice that in three-phase
systems, it is not possible to eliminate the common-mode
voltage, though we can minimize its magnitude by changing
the order of output vectors. Owing to the reconfigurable
hardware, the system designed can be adapted in the future
to control four-phase or six-phase induction motors. There
are others advantages in the use of this strategy, e.g., the
minimization of harmonic distortion and switching losses in
the converters.

The digital system for the SVPWM was modeled as the
interconnection of the two modules: a datapath, which contains
the data register, the operator, the multiplexers and the busses;
a controller wich generates the control signals for the datapath,
and the sequence of steps to perform the overall computation
[12]. This model is very interesting in complex systems,
because it reduces the difficulty observed when only one
finite state machine (FSM) is used. This approach can be so
recursive as we wish.

This paper is organized as follows. The next section de-
scribes the basic space-vector theory used. Section III explains
some definitions required in the proposed scheme and the all
modules involved in the digital system. The simulation and
experimental results are illustrated in section IV and finally,
some conclusions are drawn in section V.

II. STANDARD SPACE-VECTOR

Fig. 1 shows the a simplified schematic diagram of the
system considered in this work which is composed of a three-
phase inverter, an induction motor and a power source. The
latter is obtained by filtering and rectifying the three-phase
power supply (380V, 60 Hz) and the induction motor has
windings connected in a wye configuration. The inverter has 6
switches (q1, q2, q3, q4, q5 and q6) and their respective diodes.
However, only three of them (q1, q2 and q3) will be analyzed
because q1q4, q2q5 and q3q6 are complementary. As a result,
there are eight different combinations of them, and thus, eight
voltage vectors in which, two are null and six are active.
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Fig. 1. Simplified schematic diagram of the three-phase system.

The space-vector technique allows to synthesizing a desired
vector ~Vref from two adjacent active vectors, ~Va and ~Vb
(among ~V1-~V6, see Fig. 2), and the null vectors (~V7 and ~V8). In
the proposed design, two null vectors are inserted in a PWM
period (T ), one for each half (T/2), in any desired order. The
vector’s magnitude can be expressed as follows

~Vn =
2
3
Vdce

j
(n−1)

3 , n = 1, 2, . . . , 6

~V7 = ~V8 = 0

where Vdc is the dc-link voltage.
The vector ~Vref has two components Vα and Vβ as shown

in Fig. 2 and it can be synthesized from the vectors ~Vx and
~Vy that corresponds to applying the active vectors (~Va and
~Vb) during time intervals, ta and tb. The null vectors are also
applied to reduce the inverter switching frequency.

~Vref = Vα + jVβ = ~Vx + ~Vy =
2ta
T

~Va +
2tb
T

~Vb

T

2
= ta + tb + t0
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Fig. 2. Voltage space-vector diagram.

Hence, the half PWM period T is composed by the switch-
ing times ta, tb and t0. The total time of the null vectors can
be expressed as

t0 =
T

2
− ta − tb (1)

and the switching time of the active vectors for each sector
can be calculated as shown in table I.

TABLE I
SWITCHING TIMES FOR SECTOR

Sector ~Va ta ~Vb tb

I ~V1
3T
4

( Vα
Vdc

− Vβ√
3Vdc

) ~V2
3T
4

2Vβ√
3Vdc

II ~V3
3T
4

(− Vα
Vdc

+
Vβ√
3Vdc

) ~V2
3T
4

( Vα
Vdc

+
Vβ√
3Vdc

)

III ~V3
3T
4

2Vβ√
3Vdc

~V4
3T
4

(− Vα
Vdc

− Vβ√
3Vdc

)

IV ~V5 − 3T
4

2Vβ√
3Vdc

~V4
3T
4

(− Vα
Vdc

+
Vβ√
3Vdc

)

V ~V5
3T
4

(− Vα
Vdc

− Vβ√
3Vdc

) ~V6
3T
4

( Vα
Vdc

− Vβ√
3Vdc

)

VI ~V1
3T
4

( Vα
Vdc

+
Vβ√
3Vdc

) ~V6 − 3T
4

2Vβ√
3Vdc

III. DIGITAL HARDWARE IMPLEMENTATION

In order to present the SVPWM design, some preliminary
definitions based on the previous section equations are neces-
sary, such as modulation index (mα and mβ), scale factor (k),
frequency register (freqreg) and synchronous pulse (syncpulse).
The two first ones are used to calculate the switching times
and can be expressed by the equations 2, 3 and 4. Both are
input parameters, but mα and mβ are considered as fixed-point
fractions and the k as an integer. Another input parameter
(an integer) is the freqreg which is employed to adjust the
PWM period conveniently (see equation 5). The last definition,
syncpulse, is a pulse signal generated at the beginning of
each PWM half period. It is used to synchronize the internal
system modules as well as the external blocks connected to
the SVPWM.

mα =
Vα
Vdc

(2)

mβ =
Vβ
Vdc

(3)

k =
3T

4
=

3
2

(freqreg + 1) (4)

T = 2(freqreg + 1)Tclk (5)

The digital system (DS) was developed using the Finite
State Machine with Datapath (FSMD) model [12] which
divides the system in two blocks, a datapath and a controller,
as described in Fig. 3. Other input parameters are the system
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Fig. 3. (a) Block diagram of the proposed F-SVPWM. (b) Block diagram of the Datapath.

clock (clk), the start signal (start), the reset signal (reset)
and the sequence of output vectors (SEQ). The controller is
represented by a finite state machine (Moore machine) and
the datapath is composed of five modules which were also
modeled using the FSMD model. The functions performed by
the DS are:

1) Identify the reference vector (~Vref ) sector.
2) Calculate the switching times from table I.
3) Recalculate the switching times, if overmodulation ex-

ists.
4) Generate the output vectors.
5) Control the time vectors application.
Initially (see Fig. 4), the controller waits for a start signal

(state Start) and then loads the datapath registers (state Load).
After that, the SF module is started and works for some clock
periods (state Sector). The controller keeps inactive waiting
for SF to finish (ESF=1), since the other modules need ~Vref
sector information. When the sector is found, the controller
starts the TC module (state Times) and waits until it finishes
(ETC=1). This module also informs (through the signal OM) if
overmodulation is observed, allowing the controller to activate
or not the OM module1. Finally, the TCON module is started
(state TCON), and by its turn, activates the OG module using
the syncpulse signal (state Output) 2.

When the datapath registers are loaded, the signals mRα,
mRβ , freqReg and kR are available for all internal datapath
modules and remain the same until a new cycle starts. The
load action is realized by the controller through the LDR
signal. Each datapath module starts only when a specific
signal arrives with a high logical level. Except for the OG
module, the others begin their activities with signals from the
controller: SSF (start SF module), STC (start TC module),

1The states BusA and BusB configure the internal buses in the datapath and
the OM module is started by the state Over. The buses are chosen using the
ctrl signal.

2The state Sync is only for synchronizing the controller.

SOM (start OM module) and STCON (start TCON module).
As mentioned before, the OG module is started by the TCON
module using the syncpulse signal. Both (OG and TCON)
never stop working, except when the user pushes the reset
button and consequently generates the reset signal. This action
reset all the system’s blocks, including the controller. If the
user wishes to initiate the system again, a new start signal is
necessary.

The signals tan, tbn and t0n in Fig. 3 receive values from
TC module (ta, tb and t0) or from OM module (tal and tbl)
according to the overmodulation detection executed by the TC
module. When it is positive (that is, overmodulantion exists)
the controller changes the input TCON values using the ctrl
signal. This choosing have to be the same during some clocks
and consequently a register is necessary 3.

Output

LoadStart Sector Times

reset=1

Over BusB

TCONBusA

ETC=1 and OM=0

syncpulse=1syncpulse=1

EOM=1

start=1 EFS=1

ETC=1 and OM=1

Sync

Fig. 4. State Diagram of Controller.

A. Sector Finder (SF) Module

Due to existing different switching time equations, as shown
in table I, the reference voltage sector knowledge is necessary.
The SF module is responsible for finding the reference vector
sector and does it using the following conditions:

If 0 ≤ Vβ <
√

3Vα, then ~Vref locates in the sector I;

3The LDCTRL signal is used by the controller to load the register.
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Fig. 5. Simulation results using constant modulation indexes in sector I (mα = 0.2, mβ = 0.25).

If Vβ ≥
√

3Vα and Vα ≥ 0, or Vβ > −
√

3Vα and Vα < 0,
then ~Vref locates in sector II;

If 0 < Vβ ≤ −
√

3Vα, then ~Vref locates in sector III;
If
√

3Vα < Vβ ≤ 0, then ~Vref locates in sector IV;
If Vβ ≤

√
3Vα and Vα ≤ 0, or Vβ < −

√
3Vα and Vα > 0,

then ~Vref locates in sector V;
If −
√

3Vα ≤ Vβ < 0, then ~Vref locates in sector VI;
Instead of Vα and Vβ in above statements, we can use the

modulation index components to select the appropriate sectors.

B. The Timing Calculation (TC) Module

This module calculates the switching times which compose
the PWM period. The ta and tb times are shown in table I
and t0 in equation 1, as mentioned before. However, t0 is still
divided in two parts, one for each null vector, assigned as
follows

t7 = t8 =
T/2− ta − tb

2

The input parameters mα, mβ and k allow this module to
obtain the switching times using only multipliers and adders.
The addition operation is executed firstly and its result is
multiplied to the scale factor (k).

C. The Over Modulantion (OM) Module

When ta + tb is greater than T/2, t0 is negative and the
overmodulation occurs. Therefore, the switching times are
recalculated by the OM module using the old time values.
The new values (t̄a and t̄b) are obtained from (6) (if ta > tb)
and (7) (if tb > ta) . To avoid the overmodulation, the input
parameters mα and mβ have to be lower than 1/

√
3.

t̄a =
ta

ta + tb

T

2
, t̄b =

T

2
− t̄a (6)

t̄b =
tb

ta + tb

T

2
, t̄a =

T

2
− t̄b (7)

D. Output Generator (OG) and Timing Control (TCON) Mod-
ules

These modules generate the PWM outputs based on the in-
formation from the other modules, e.g. switching time values,
~Vref sector and overmodulation detected. The OG chooses the
correct combination for the outputs signals (output) and keeps
it until its duration time finishes. On the other hand, the TCON
informs to OG when outputs should be changed.

IV. EXPERIMENTAL RESULTS

The experimental results were obtained using the Signal Tap
II Logic Analyzer and the Altera Cyclone II EP2C35 prototype
board. Previously, the F-SVPWM was simulated in the Altera
Quartus II environment with constant modulation indexes4 in
sector I (mα = 0.2, mβ = 0.25). The order of output vectors
were changed in the half PWM period, through the input
parameter SEQ. Each output vector has a binary code in the
SEQ byte (~V7 = 00, ~V8 = 11, ~Va = 01 and ~Vb = 10), where
the output sequence is defined according to SEQ bits grouped
two by two (from right to left). The two first bits correspond
to the first output vector code, the two next bits correspond to
the second output vector code and thus successively until the
last bits. The output vectors in the simulation are ~V7 = 000,
~Va = 100, ~Vb = 110 and ~V8 = 111 for the first half period
and ~Vb = 110, ~V8 = 111, ~Va = 100 and ~V7 = 000 for the
second. The results can be viewed in Fig. 5, where clk=50
MHz, freqreg = 2499 and k = 3750. The PWM frequency
was 10 KHz.

The same simulation input parameters were used in the
experimental procedure, except modulation indexes and SEQ
value (the output sequence was ~V7, ~Va, ~Vb and ~V8). The
parameters mα and mβ were changed for each PWM period,
according to a sinusoidal signal. The experimental data for q1

were acquired from the FPGA (sampling frequency=50 MHz)
using Signal Tap tool, stored in a text file and then plotted in
a Gnuplot graphic (see Fig. 6). The sinusoidal reference was
also plotted in the same graphic, but its values were changed

4The modulation indexes correspond to fixed-point fractions with 13 bits,
where the first bit (from left to right) represents the signal, the second bit
represents the integer part and the others represent the fraction part.
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Fig. 6. Experimental results (q1 output signal) using modulation indexes as
a sinusoidal signal.

to fit in the [0,1] magnitude interval. We can verify that the
output width pulses agree with the signal input reference.

V. CONCLUSION

This paper presents a flexible implementation of space vec-
tor pulse width modulation (F-SVPWM) technique on FPGA.
Its main feature corresponds to reduce the load common mode
voltage and minimize the harmonic distortion of the load phase
currents. These results can be obtained changing the order of
output vectors for each half PWM period. Therefore, SVPWM
proposed uses as an input parameter, the desired order for these
vectors. Experimental results and simulations were achieved
using Signal Tap Logic Analyzer and Quartus II from Altera.
Sinusoidal signals as well as constant values were tested as
modulation indexes.

The Finite State Machine with Datapath (FSMD) model
was employed in all system’s modules design, reducing its
implementation complexity. Moreover, due to the reconfig-
urable hardware FPGA feature and the modularity presented
by the FSMD model, the system can be adapted to control
four-phase or six-phase induction motors. In the future, the
SVPWM will be used in a closed loop system in order to
obtain experimental results and validation tests with three-
phase inverter and induction motors.
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