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Abstract — This paper discusses the main 

characteristics and presents a comparative analysis of three 
synchronization algorithms based, respectively, on a Phase-
Locked Loop, a Kalman Filter and a Discrete Fourier 
Transform. Details on how to modify the filtering properties 
or dynamic response of each algorithm will be discussed in 
terms of their design parameters. In order to compare the 
different algorithms, these parameters will be set for 
maximum filter capability. Then, the dynamic response, 
during input amplitude and frequency deviations will be 
observed, as well as during the initialization procedure. So, 
advantages and disadvantages of all considered algorithms 
will be discussed. 

I. INTRODUCTION 

The identification of fundamental amplitude, frequency and 
phase angle of the power grid voltages has been an important 
goal related to controlling and synchronizing power electronic 
devices. In this sense, several algorithms have been proposed 
and discussed. 

The PLL – Phase Locked Loop – has been one of the most 
applied algorithms to get synchronization signals [1-5]. Recent 
researches have been shown that RDFT – Recursive Discrete 
Fourier Transform – can also be applied. Using the information 
of the RDFT, it is possible to synthesize a unitary 
synchronizing signal, independently of the input conditions [6-
8]. Other possibility is the KF – Kalman Filter, barely, but also 
applied in some power system applications [9-12]. Each 
algorithm has its own dynamic and filtering characteristic [13]. 

The next sections will present the particular details on 
designing each model, as well as their advantages and 
disadvantages. In order to perform a comparative analysis, the 
parameters of all algorithms will be set to achieve maximum 
filtering characteristics respective to waveform distortions. 
Afterward, their performance and dynamic response will be 
analyzed during initialization and voltage or frequency 
transitory conditions. 

 

II. PLL - PHASE LOCKED LOOP 

The analyzed model has been proposed in [1] and is shown in 
Fig. 1. The voltage signal, v, is directly sampled from the power 
grid and an orthogonal signal u⊥ is generated by the PLL 
algorithm when the synchronization is achieved. The average of 
the inner product (dp) is calculated and compared to a nil 

reference signal (orthogonality condition). The difference of 
these two signals is an error signal that is applied to a PI 
controller. The output of the PI is the fundamental frequency ω 
of v. This frequency is integrated in order to get the phase 
function � = ωt of the digitally synthesized orthogonal signal. If 
a discrete system is used, it is necessary to consider the delay 
block, where Ts is the sampling period. If the nominal 
frequency is previously known, it can provide a feed forward 
signal ω0=2πf1 in order to improve the initialization dynamic 
response. 

The average of the dot product (dp) can be calculated by 
means of a moving average filter, which should be tailored as a 
function of the estimated fundamental frequency (ω). This can 
be done adjusting either the sampling frequency or the window 
size according to frequency variations (ω). As discussed in [5], 
it can be shown that the nonlinear filter transfer function can be 
simplified by means of Taylor Series, resulting to a linear, 
constant and unitary gain. 
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Fig. 1. PLL using inner product of orthogonal functions. 

 

The frequency and the phase angle generated by the PLL are 
used to synthesize the signal u (1), which is proportional (in-
phase) to the fundamental signal of the power grid. If the input 
voltage is distorted, the PLL algorithm will calculate the 
fundamental frequency (ω) and phase (�) of the measured 
voltage. 
 )90sin( °+= θu . (1) 

Since (1) results in a unitary signal, an additional algorithm is 
needed to calculate the amplitude of the fundamental 
component. Such algorithm must be sufficiently robust to deal 
with distorted input voltages. An interesting proposal has been 
presented in [16] and it is summarized in the Appendix. 

Although the normalization of the measured signal is very 
important to the PLL performance, the gains of the PI controller 
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are directly related to the dynamic response and effectiveness of 
the system. Then, the calculations of the PI parameters must be 
realized very carefully, according to the conditions that the PLL 
algorithm will be used [1,13]. In this paper, the calculation of 
such gains is based on the closed-loop transfer function of the 
linearized model shown in Fig. 2: 
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Fig. 2. Simplified model of single-phase PLL. 

 
Null steady-state error for a ramp reference signal is a natural 

characteristic of a system with structure like the one in (2). But 
it was not possible to obtain a set of parameters in order to 
achieve both good filtering and fast response. Thus, the design 
of the PI should be done considering the most important 
characteristics, regarding to the final PLL application.  

Considering equation (2), while the sampling frequency was 
sufficiently high, the pole of the transfer function related to it is 
very distant from the origin and from the other two poles. So 
such pole can be neglected, yielding a simplified transfer 
function: 
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The gains can be calculated by the second order canonical 
form: 
 nPK ξω2= , 2

nIK ω= , (4) 

where ωn [rad/s] is the desired closed-loop frequency of the 
system and ξ is the damping factor, usually between 0.5 and 1. 

 

III. RDFT - RECURSIVE DISCRETE FOURIER TRANSFORM 

Considering that the RDFT can be calculated in a recursive 
form [6-8], the model discussed in this paper has been proposed 
in [13]. A signal v is sampled at a sampling frequency 
fs = 1/Ts = N/Tw, where Tw is the size of a sliding sampling 
window and N is the number of samples in the period Tw. 
Assuming a sequence of samples k-N ≤ n ≤ k-1, k ≥ 1, the 
discrete Fourier transform of this sequence, where v[n] = 0 if 
n ≤ 0, is: 
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with Vm(0) = 0. 
If the nominal fundamental frequency of the power grid is 

f1 = 60 [Hz], Tw is chosen 1/60 [s]. When T1 is equal to Tw and 
m = 1, the real part of the inverse transform of (5) results in a 
filtered signal with the correct amplitude, frequency and phase 

of the fundamental component. However, in real applications, 
T1 can be diferent from Tw. So, the output signal of RDFT 
results the correct frequency, but the phase and amplitude will 
be different from the input signal. The RDFT behaves like a 
band-pass filter tuned on frequency 1/Tw. 

Since it is not possible to change the sampling period in 
several applications, it will be applied a method of synthesis of 
an unitary signal u(k-N), in phase with the measured voltage, 
which will be useful for adapting the algorithm when T1 ≠ Tw.  
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where: 
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and: 
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where ϕ(JN+1) is the argument (7) of the transform in the 
beginning of Jth interval of Tw, with J = 1, 2, 3… Fig. 3 shows 
the complet process. In this case, the RDFT will also need an 
additional amplitude detector, as the one discussed in the 
Appendix. 
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Fig. 3. Blocks diagram of RDFT. 
 

Two methods can be used to fundamental frequency 
identification. The first one uses the zero-crossing detection of  
u(k-N), which is purely sinusoidal. In order to improve the 
frequency estimation accuracy, an average of the last six values 
is realized at the end of each cycle of u(k-N). The second 
method results from: 
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Both methods are relatively accurate. However, fast 
transients in the fundamental frequency can be not detected. 
Nevertheless, since the frequency variations of the power grid 
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are usually slow, the smooth response of the algorithm is not a 
disadvantage. Further, the synthesis of u(k-N) does not depend 
on the frequency detection and the dynamic response of any 
control or synchronizing system based on the RDFT will not be 
affected. 

IV. KF – KALMAN FILTER 

As discussed in [14,15], consider a system model via state-
variables 
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where: 
• k is the calculus step, 
• xk is a n x 1 state vector of the system in the step k, 
• yk is a m x 1 vector of the measurement in the step k, 
• A is a square matrix n x n, which should be ajusted in case of 

frequency deviations of the input signals, 
• B is a constant m x n matrix, 
• wk is a n x 1 vector representing process noise (due to 

perturbations and inaccuracy of the dynamic model), 
• zk is a m x 1 vector representing measurement noise (due to the 

inaccuracy of transducers and signal conditioning circuits) on the 
signals to be digitalized. 

 
Defining: 

• Q – process noise covariance, 
• R – measurement noise covariance, 
• 1−− kkk xx /ˆ  – initial estimation error, 

• Pk/k-1 – estimation covariance error, 
• kk xx ˆ−  – final estimation error, 

• Pk – final estimation error covariance and 
• Kk – Kalman gain, 
 
the state estimation kx̂ based on measurements yk, is achieved 
in two parts: a prediction step and a correction step, as shown in 
Fig. 4. The first step estimates the state ahead and gets the error 
covariance ahead. The second one computes the Kalman gain, 
update the estimation with measurement and update the error 
covariance. 
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Fig. 4. KF description. 

 
According to [9-12], a good model for the real fundamental 

wave  of  a  single-phase  power system  can be  represented by  

means of discrete state-variable model: 
    V1(k) = A.V1(k-1) + wk-1 

                             v(k) = B.V1(k) + zk , 
 

where V1(k) = 
�
�
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phase (v1(k)) and orthogonal (v1⊥(k)) to the measured signal 
v(k), B = [ ]01 , wk has a  dimension 2 x 1 and zk, 1 x 1, and  
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�
�



�
�

� −
)/2cos()/2sin(

)/2sin()/2cos(

NN

NN

ππ
ππ .  

Differently from other proposals, as [12], e.g., in this paper 
the harmonic components are not included in a deterministic 
way (that is in the very matrix A). They will be considered 
perturbations and in this sense, will be modeled by the 
measurement and process noises. Considering the harmonics in 
matrix A, even if limiting the maximum order, would be a very 
complex task. 

Thus, the filtered signals in V1(k) presents the same 
amplitude of the fundamental component of v(k), what means 
that the magnitude of the fundamental component is calculated 
by: 
 2

1
2
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The instantaneous phase angle can be obtained from: 
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and the fundamental frequency f1 can be estimated from zero-
crossing detection of the signal θ(k) and improved with an 
average of the last four estimations. 

Matrix A is responsible for the performance of the KF when 
there is a frequency variation in the input signal. As N = fs/f1, 
changing f1 leads to changing the elements of matrix A, if fs is 
kept constant. In order to make the KF immune to these 
disturbs, the identification of f1 is essential. 

The filtering characteristics and the convergence speed of the 
filter are defined by the measurement noise and process noise. 
When the measurement noise is high, the trace of R and the 
elements of Kk will be small. So, the relative weigh of yk should 
be reduced in the next calculus of the estimation, what makes 
the convergence slow. On the other hand, when the 
measurement noise is small, the trace of R and the elements of 
Kk will be high, ensuring a better confidence in yk and a fast 
dynamic response.  

When the process noise is high, the trace of Q and Pk/k-1 and 
the elements of Kk are high, resulting in a large reliability for 
the measurements of yk in the next estimation step. If the 
process noise is small, the trace of Q and Pk/k-1 and the Kk 
elements are small, resulting in a small weight for yk and a slow 
convergence of the algorithm.  

Therefore, the KF design depends on conciliation between 
desired accuracy and dynamic response, what can be achieved 
by a proper choice of matrices Q and R, taking into account 
input waveform distortions and desired characteristics of final 
applications [13]. 

(11) 
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V. SIMULATION RESULTS 

In order to compare the discussed algorithms, some 
simulations has been realized. The sampling frequency was set 
to fs = 12 kHz. The input signal was defined with unitary 
amplitude, f1 = 60 Hz, phase angle π/6 and it is distorted with 
10% of 3rd, 5th and 7th harmonics. The parameters of PLL and 
KF were set to get the maximum filtering capability. The 
parameters ωn = 22,63 rad/s and ξ = 0,707 were chosen for the 
PLL and considering the KF filter,  
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010     and     R = [ ]64.0 . (18) 

 
The THD – total harmonic distortion – of the resulting filtered 
signals were 0% for the PLL and RDFT and 0.18% for the KF. 
Fig. 5 shows the estimated fundamental frequency and the 
errors between the input and output signals for the three 
algorithms, during   initialization.  Considering the RDFT, the 
frequency has been calculated using both methods: zero-
crossing detection (right) and by (9) (left). The error signal 
convergence time has been respectively, 0.3 s, 1.3 s and 2 
cycles for PLL, KF and RDFT. 
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Fig. 5. PLL, KF and RDFT: initialization. 

 
Fig. 6, 7 and 8 show the performance of the methods during a 

sag about 50% on the input voltage in t = 2.5 [s]. The upper 
graphics show the input and output voltages of the algorithms 
and the lower part shows the calculated frequency. The output 
signal converges almost instantaneously in PLL and RDFT and 
needs 0.5 s to converge in the KF. The frequency does not 
change in KF. In case of PLL and RFDT, a small perturbation is 
observed but it is eliminated very rapidly. 

Fig. 9, 10 and 11 show the algorithms performance when the 
fundamental frequency changes to 59 Hz (t = 2.5 [s]). The 
output voltage of RDFT converges almost instantaneously and 
the PLL and FK output needs 0.3 s and 1 s, respectively. It can 
be noticed that the resulting frequency signal is somewhat 
oscillatory for the three algorithms. This could be avoided if the 
sampling frequency were conveniently altered during the 
processes. Table 1 summarizes the convergence time and the 
frequency variation range for all of the algorithms. 
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Fig. 6. PLL, voltage sag. 
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Fig. 9. PLL, fundamental frequency variation. 
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Fig. 11. RDFT, fundamental frequency variation. 
 

Table 1 – Fundamental frequency dynamic. 

 Convergence 
time (s) ∆∆∆∆f1 (Hz) 

PLL 0,3 58,95 - 59,05 
FK 1,0 58,97 - 59,04 

RDFT  
(Left) 0,1 58,97 - 59,02 

RDFT  
(Right) 0,02 58,98 - 59,07 

 

VI. CONCLUSIONS 

This paper has discussed and compared three different 
algorithms capable of providing synchronism information for 
grid connected applications. These methods were able to 
identify the amplitude, frequency and phase angle of the grid 
voltages. The filtered signals convergence and the calculated 
fundamental frequency were observed by means of simulation 
results. 

It is important to point out the necessity of choosing among 
different strategies in order to solve a specific problem, as well 
as choosing among particular characteristics and desired 
performance for the algorithms, even when they are 
contradictory. Such choices are especially important when 
dealing with the implementation of any system, on which is 
expected to have good dynamic response under transitory 
conditions and good accuracy under steady-state. 

The PLL algorithm is interesting when a smooth frequency 
dynamics is required, since f1 is calculated every sampling step. 
Moreover, the PLL requires a normalized input signal and an 
amplitude detector for fundamental identification.  

The RDFT results have shown a shorter convergence time 
and a good filtering capability. However, the dynamic of the 
frequency estimation is not smooth, because it is updated every 
cycle. The RDFT algorithm does not require normalized input 
signals, but it needs an amplitude detector if the frequency is 
allowed to deviates from the nominal value.  

The KF does not require normalization of the measured 
voltages, or amplitude detectors. However the frequency 
calculus dynamic is not smooth and, as well as with the PLL, its 
performance could be smashed if the disturbs in the input signal 
increases significantly.  

Based on the realized studies and previous simulations, it is 
possible to notice that the RDFT algorithm could be 
recommended when the filtering capability and convergence 
time are of major concern; PLL algorithm could be 
recommended when the frequency estimation is needed every 
discrete step or when the computational capability is limited 
(because of its simplicity); the KF importance can be justified 
since it does not require any complex additional technique to 
identify the amplitude, frequency or phase angle information. 
All of them are interesting alternatives to be used in 
applications with synchronization requirements or fundamental 
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wave identification. The choice of one or other technique 
depends basically on the final application requirements. 

APPENDIX – FUNDAMENTAL AMPLITUDE  DETECTOR 

Considering the applications on which the identification of 
fundamental amplitude may be necessary, the following 
methodology can be used along with the unitary sinusoids 
generated, e.g., by the RDFT or PLL presented previously. 

Assume that the fundamental and harmonic components of 
the utility voltage can be expressed by:  

�
=

+++=
N

n
n tnCtAv

2

)](sin[)sin( ϕωϕω ,        (A.1) 

where A is the amplitude to be identified, � is the frequency 
and � is the phase of the fundamental component, and Cn is the 
amplitude of the nth harmonic component. 

The digital sinusoid obtained from the PLL or RDFT outputs, 
which should be in-phase with the fundamental component and 
has unitary amplitude, can be expressed by: 

)sin( ϕω += tu .                             (A.2) 
Multiplying (A.1) and (A.2) yields: 
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Since all product terms containing different frequency 
components have zero mean value, the resulting mean value of 
(A.3) reduces to the mean of the first squared term: 

2
A

uv =⋅ ,                                      (A.4) 

Hence, the amplitude of the fundamental component of the 
utility voltage is given directly by: 

uvA ⋅⋅= 2 .                                    (A.5) 
Fig. 12 illustrates the fundamental amplitude detector. Since the  
PLL  or  the  RDFT  can  be  used,  the  proposed scheme is 
immune to voltage distortions or frequency deviations and it is 
not based on any sort of voltage peak detector. 
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Fig. 12 – Fundamental Amplitude Detector.  
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