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Abstract –Harmonics and unbalance causes several 
problems to equipments connected in AC mains. This 
work proposes a real time method to obtain the positive 
and negative sequence components and/or harmonics 
that require nor coordinate transform neither signal 
filtering. Numerical simulation and experimental results 
are showed to validate the proposed method.  
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I. INTRODUCTION 

Distorted and unbalanced voltages/currents in electric 
systems cause several negative effects in power systems 
[7],[12], [23]-[29],[35],[36].  

Real time extraction of unbalances and/or or harmonics is 
demanded in some applications like active compensators and 
protective relays. Many strategies were developed for 
unbalanced components and/or harmonics extraction [1]-[4], 
[6], [8], [9], [11], [13]-[18], [20], [21], [22], [26], [28], [29], 
[31], [32],[34] and [35]. Among them, the well known 
methods are: positive synchronous reference frame (RSP) 
and negative synchronous reference frame (RSN) [8], [26], 
the real time detection using space vectors (DTRVE) [32], 
the instantaneous active and reactive theory (PQ) [2],[30] 
and the direct injection of negative sequence (DSNI) [9]. A 
comparative study about some of these strategies is done by 
[5], [10] and [19].  

This paper is based on the work developed by [10],[34]. It 
proposes an algorithm based on the “symmetrical 
components theory” that requires nor coordinate transform 
neither signal filtering. It uses only algebraic calculations. 
This method allows extracting only the fundamental positive 
and/or negative sequence and/or harmonics (section 3). 
Experimental results using Matlab - Simulink software and 
Analog DSP ADMC401 are presented (section 4). 

 

II. APPLICATIONS OF THE PROPOSED METHOD 

The proposed algorithm can extract positive, negative 
sequence and harmonics components of a corrupt signal and 
be applied to active power filters, dynamic voltage restorers, 
power quality analyzers and protective relays systems.  

III. PROPOSED METHOD FOR CALCULATING THE 

INSTANTANEOUS REFERENCE  

A. Algorithm description 
  
Eq. (1) calculates the phasors of the symmetrical 

components (
•

0S ,
•

+S ,
•

−S ) of a set of  three phase signals 

(current or voltage) (
•

RS ,
•

SS ,
•

TS ) [24] and [33]: 
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Zero sequence signals can be extracted using (2). To get 
the unbalanced signals, in three-phase three wire systems, it 
is necessary to separate the negative sequence (3).   
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To obtain the desired signals in rst frame it is necessary to 
multiply the signals of (3) by the inverse matrix (M-1) from 
(1), so obtain (4). 
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The matrix operation showed in (4) can be divided into 

two matrixes: the first one contains the real terms and second 
one the imaginary terms multiplied by –j, according (5). 
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For steady state operation ([10],[34],[37]) the phasor 
equations (4) and (5) can be rewritten in time domain, 
resulting in (6) and (7). The phase shift of 60º (-60º) or -90º 
(90º) can be implemented by time delaying the original 
signals by a time interval corresponding to the desired angles 
at the fundamental frequency. The time delaying can be 
implemented by saving a determined number of samples. 
The delay of 90º (signals (sr-90(t), ss-90(t), st-90(t)) can be 
implemented by saving the last N/4 measured samples. The 

1



advance of 90º is accomplished by the delayed signals 
multiplied by –1. The delay of 60º (sr-60(t), ss-60(t), st-60(t)) can 
be accomplished by saving the last N/6 measured samples. 
The  60º phase advanced signals (sr60(t), ss60(t), st60(t)) can be 
obtained by using the last N/3 measured and saved samples, 
equivalent to a delay of -120º, with opposite signal. , (N is 
the number of samples per period, at the fundamental 
frequency).  
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The same reasoning can be applied to calculate the 

positive sequence, only changing 60º (-60º) to –60º(60º) (8) 
or -90º (90º) (9).  
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The operations defined by eqs. (6),(7),(8),(9) will be 

called as A, B, C, D respectively. Operations A and B 
provide the same result for the fundamental frequency. The 
same occurs for operation C and D. The methods were 
originally developed for the fundamental frequency. 
Harmonic components will present different behaviors 
according to their order and phase sequence for he operations 
A, B, C, D. Table I and Table II present the gain and phase 
(º) displacement resulting for the use of the operations A, B, 
C, D, and the cascaded cases A+B and C+D for odd and even 
harmonics respectively (positive and negative sequence).  

 
TABLE I – Gain and angle (degrees) for operations A, B, 
C, D, A+B, C+D for odd harmonics, positive and negative 

sequences.  
operation A B C D A+B C+D 

1ºseq+   01  01   01

1ºseq- 01  01    01  
3ºseq+  01      
3ºseq-    01    
5ºseq+ 01    01    
5ºseq-  01  01     

 

TABLE II – Gain and angle (degrees) for operations A, 
B, C, D, A+B, C+D for even harmonics, positive and 

negative sequences.  
operation A B C D A+B C+D 

2ºseq+ 0
3
1  

45
10
7  

60
3
2
−

 
45

10
7

− 45
30
7   

105
30
14

−

2ºseq- 60
3
2
−

 
45

10
7

−
 

0
3
1  

45
10
7  

105
30
14

− 45
30
7  

4ºseq+ 60
3
2  

45
10
7

−
 

0
3
1  

45
10
7  

15
30
14  

45
30
7  

4ºseq- 0
3
1 45

10
7  

60
3
2  

45
10
7

− 45
30
7  

15
30
14  

6ºseq+ 60
3
2
−

 
45

10
7  

60
3
2  

45
10
7

− 15
30
14

−
 

15
30
14  

6ºseq- 60
3
2  

45
10
7

−
 

60
3
2
−

 
45

10
7  

15
30
14  

15
30
14

−
 

8ºseq+ 0
3
1 45

10
7

−
 

60
3
2
−

 
45

10
7  

45
30
7

−
 

15
30
14

−
 

8ºseq- 60
3
2
−

 
45

10
7  

0
3
1  

45
10
7

− 15
30
14

−
 

45
30
7

−
 

10ºseq+ 60
3
2  

45
10
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0
3
1  

45
10
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− 105
30
14  

45
30
7

−
 

10ºseq- 0
3
1 45

10
7

−
 

60
3
2  

45
10
7  

45
30
7

−
 

105
30
14  

 
For odd harmonics, operations A (C) presents the same 

gain for (1+6n) order positive sequence (neg. seq) harmonics 
(n=0,1,2,....) and for (5+6n) order negative sequence 
(pos.seq.). Operations B and (D) presents the same gain for 
(3+4n) seq+(-) and (1+4n)seq-(+) harmonics. The cascaded 
application of operations AB (CD) presents the same gain for 
(11+12n)seq+(-) and (1+12n)seq-(+) harmonics. For even 
harmonics, operations A and C presents the same gain for 
(2+6n), (4+6n) and (6+6n) harmonics. Operations B and D 
presents the same gain for (2+4n) and (4+4n) harmonics. 
Cascaded application of operations AB and CD presents the 
same gain for (2+12n), (4+12n), (6+12n), (8+12n), (10+12n) 
and (12+12n) harmonics. For all operations, even harmonics 
are not cancelled but only minimized.  For additional 
attenuation, the operations blocks can be cascaded. 

 
B. Strategies to separate the individual disturbances  
 
A careful analysis of table I show that it is possible to 

combine operators (A, B, C, D) to obtain different 
compensation strategies (table III). Only odd harmonics are 
considered in the four cases. Case 1 shows how the positive 
sequence of the fundamental component can be extracted 
from harmonic corrupted, unbalanced signals, by the 
cascaded application of C and D operations. Similarly, Case 
2 shows the extraction of the negative sequence signal by 
using A and B operations. It is suitable for calculating the 
reference signal of unbalance compensators.  Case 3 extracts 
all the harmonic components and is suitable for using in 
harmonic filters. Case 4 extracts the negative sequence and 
harmonics. 
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TABLE III – DESIRED EXTRACTION 
Case 1: Positive sequence  

 

 
Case 2: Negative sequence 

 

 
Case 3: Harmonics 

 
Case 4: Harmonics and Unbalances 

 
 
 
 
 
 
 
 
 
 

 

IV. SIMULATION AND EXPERIMENTAL RESULTS  

The methods were simulated for each case showed in 
Table III, using the software MATLAB [37]. Transient 
response is presented in table IV [37]. Processing time (for 
ADMC401) is presented in table V. Corrupted test signal is 
showed in (Fig.1) and steady state extracted signals for 
methods AB and CD are showed in Figs. (2), (3), (4) and (5). 
 
TABLE IV – TRANSIENT RESPONSE (related to the 
period of the fundamental signal) 

Method A B C D AB CD 
Theory 1/3 ¼ 1/3 ¼ 3/5 3/5 

Simulation 1/3 ¼ 1/3 ¼ 3/5 3/5 
Experimental 1/3 ¼ 1/3 ¼ 3/5 3/5 

 
Table V – Processing Time (for ADMC401) 

Method A B C D AB CD 
Time  (us) 7.6 9 7.6 9 15.4 15.4 

 

 
Fig. 1 Test signal 

 

 
Fig. 2 Negative sequence signal extracted by process AB  

 
Fig. 3 Positive sequence Signal extracted by process CD 

 
The proposed method assumes that the period of the signal 

is known, to generate the delayed signals ((sr-90(t), ss-90(t) e st-

90(t)), (sr-60(t),ss-60(t),st-60(t)), (sr60(t),ss60(t),st60(t)). A PLL can 
be used to instantaneously track the signal period. If a PLL is 
not used, and a fixed period equal to the nominal value is 
used, errors may arise from this method. To verify the 
possibility of operation without PLL the frequency response 
for the case 2 (table III) was evaluated for 1, 3, 5, 7 harmonic 
components of the input signal (fig. 4). The amplitude error 
of the extracted fundamental negative sequence is quite small 
(2%) for a large variation (50 to 70 Hz) of the input signal. 
Phase delay, by the other side, is quite large (180 degrees for 

- 

D 
+ measured 

signals 
Extracted 

signals  C 

1+,  
5- 

1+, 1- 
3+, 3- 
5+, 5- 
etc, 

1+ 

1- 
3+, 
3- 
5+, 
5- 
etc,
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50Hz), making this method not viable for some applications.  
The delays were based on a 60Hz signal.  

Positive sequence is adequately attenuated (gain= 0,02 for 
50Hz).  

Harmonic components, which are expected to be fully 
cancelled by case 2 algorithm, have a poor attenuation for 
signal frequencies slightly far from 60Hz. Figure 5 presents 
the frequency response for case 1 (CD operation).  

Operation without a PLL is only feasible for signals with 
small frequency variation, which occurs in equipment 
connected to strong, interconnected power systems. For weak 
systems, fed for example by Diesel-Generators, PLL-less 
operation is possible only for low distorted voltages and 
currents.  

V. CONCLUSIONS  

This paper proposes real time algorithms to extract any 
combination of positive, negative sequence and/or harmonics 
of a corrupted signal. The processing uses nor coordinate 
transform neither signal filtering. It can be easily 
implemented in a DSP, presents a good extraction 
performance, needs no filtering, has low numerical 
complexity and presents fast response (less than one 
fundamental period).  It is suitable for many applications 
like, active power filters, dynamic voltage restorers, power 
quality analyzers, protective relay, and others. Operation for 
varying fundamental frequency and the use of PLL to 
estimate the signal period is discussed. 
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Operation AB - Frequency Response
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Fig. 4 Operation AB – Frequency Response of Case 2 for various 

harmonics and phase sequences 
Upper: gain  Lower:phase 

 

Operation CD - Frequency Response
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Operation CD - Frequency Response
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Fig. 5 Operation CD – Frequency Response of Case 1 for various 

harmonics and phase sequences 
Upper: gain  Lower: phase 
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