
 

  
Abstract-- This work presents the study of the applica-

tion of neural networks in the maximum power point 
tracking system (MPPT) of wind turbines without wind-
speed sensor. The elimination of this sensor aims at reduc-
ing problems related to maintenance. The neural network 
inputs are the mechanical power and the wind turbine 
rotor speed, and its output is the estimated wind speed. 
The training of the neural network was made using a spe-
cific software (MATLAB). The models of wind generation 
and the neural net have been evaluated using the 
PSCAD/EMTDC. The wind energy system consists of a 
wind turbine driving a squirrel cage induction generator 
which is connected to the utility grid through a back-to-
back PWM controlled voltage source converter (VSC). 
The induction generator is controlled to allow the wind 
turbine to always run at optimum speed (MPPT), thus 
extracting the maximum energy from the wind. 
 

Keyworkds — induction generator, neural networks, 
MATLAB, PSCAD/EMTDC, wind turbines, wind energy. 

I.  INTRODUCTION 
 he global warming caused by the high concentration of 
harmful gases in the atmosphere, along with the increas-

ing demand for electric energy, have increased the attention to 
renewable energy in recent years. 

Thus, the use of wind energy has increased around the 
world. This can be explained by the recent development of 
better turbines and also power electronic circuits responsible 
for the connection of the wind turbines to the grid. Adequate 
control strategies allow such devices to control electric gen-
erators so that the turbines can extract maximum power from 
the wind, thus operating in its maximum efficiency. The opti-
mum speed reference for the generator is determined by the 
measurement of wind speed [1,2]. 

However, the measurement of wind speed involves devices 
that may present some difficulties due to the place where they 
are installed, normally behind the turbine, where the wind 
speed is different from the actual speed in front of the turbine. 
Another disadvantage in the use of these sensors is the com-
plex maintenance logistics, especially, in turbines installed 
offshore. 

                                                           
 

The objective of this work is to present a maximum power 
point tracking (MPPT) estimator for a wind turbine using arti-
ficial neural networks (ANN). With this technique, it is possi-
ble to eliminate the sensor that measures wind speed. For the 
determination of the ANN´s input and output pairs, two mod-
els of wind generation system have been developed in the 
simulation program PSCAD/EMTDC. In the first system, the 
induction generator is connected directly to the grid; and, in 
the second one, it is connected through a back-to-back PWM 
converter, which allows the turbine to operate close to the 
point of maximum efficiency. The first model was used to 
train the neural network. The simplified block diagram of the 
systems can be seen in Figures 1 and 2. 

Artificial neural networks are widely used in various appli-
cations, such as pattern recognition, classifying and optimiza-
tion combinatory problems [3, 4]. In this work, the use of 
ANN´s is justified by the complexity of the necessary algo-
rithm for the determination of wind speed, which is obtained 
easily from measured variables like rotor speed and mechani-
cal power. 

The neural network is trained by using as input parameters 
mechanical power and rotor speed, while the output is the 
estimated wind speed. After training, the neural network is 
modeled in the PSCAD/EMTDC program. 

II.  WIND ENERGY FUNDAMENTALS 
Wind turbines are responsible for the conversion of the ki-

netic energy of the wind into rotational mechanical energy. 
The kinetic energy is captured in a rotor which is connected to 
an electric generator [1], where the mechanical energy is then 
converted into electricity. 

Wind turbines can be classified in two groups, depending 
on how they are connected to the grid [5, 6]: fixed and vari-
able speed turbines. 

The fixed speed turbines are connected directly to the grid, 
most of the time by means of the stator windings of a squirrel 
cage induction generator. This type of turbine is shown in 
Figure 1. 

Turbines operating at variable speed need to be connected 
to the electrical system through static converters. These tur-
bines present a control system that allows the extraction of 
maximum energy from the wind [7]. One possible control 
block diagram for this kind of system is shown in Figure 3. 
Whenever wind speed varies, a new angular speed reference 
for the rotor, ωREF , is calculated in such a way as to force the 
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turbine to operate at or close to the point of maximum effi-
ciency. 
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Fig. 1. Wind turbine-diesel hybrid system - fixed speed turbine. 

The turbine speed reference is determined by: 

opt
ref

v
R

λ
ω

⋅
= ,         (1) 

where R is the wind turbine rotor radius, v is the wind speed 
and λOPT is the turbine Tip Speed Ratio (relation between the 
wind speed and rotor tip speed). 

For speed control, the speed reference ωREF is compared 
with the measured induction generator angular speed. The 
resulting signal from this comparison is applied to a PI (pro-
portional plus integral) controller, responsible for the speed 
regulation. The output of the PI regulator is the signal that 
represents the component of the reference current iq*. The 
other current component reference in the d-axis is id*, which 
is a constant value. This current is responsible for the mag-
netization of the induction machine. The Park inverse trans-
formation is applied in these two currents, resulting in the 
three-phase currents reference, iGa*, iGb*, iGc*. They are ap-
plied to a hysteresis band current controller of the induction 
generator side VSC converter. 

According to [8] [9], the power converted by a wind tur-
bine is proportional to the cube of the wind speed, and is 
given by: 

 

2 31
2m PP R C vρπ= ,                         (2) 
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Fig. 2. Wind diesel hybrid system as variable speed turbine. 
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Fig. 3. Control system block diagram. 

 
where Pm is the turbine mechanical power, ρ is the air density, 
R is the rotor radius, Cp is the turbine power coefficient and v 
is the wind speed. 

Figure 4 shows the relation between the power coefficient 
Cp and the tip speed ratio λ. This relation shows that the 
maximum power is extracted when the turbine operates at 
λOPT. Thus, for a given wind speed, the angular speed of the 
turbine must be adjusted according to (1), in order to guaran-
tee that λ is kept close to λOPT. 

III.  NEURAL NETWORKS IN WIND SPEED ESTIMATION 
 
The objective of the application of neural networks is the 

wind speed estimation from other parameters more easily 
measured. This process increases the system robustness as 
fewer sensors are used. Moreover, it is possible to prevent 
eventual problems in wind speed measurement caused by the 
installation of the anemometer, which, in general, is located 
over the nacelle and is subject to the effect of the movement 
of the turbine. The neural network is used to estimate the cor-
relation between the input and the output parameters. 
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Fig. 4. Cp and λ relationship. 

 
With the objective of evaluating the proposed approach, the 

wind-diesel system of the Island of Fernando de Noronha, PE, 
Brazil, was modeled in the PSCAD/EMTDC. This system 
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consists of a wind turbine of 225 kW connected directly to a 
weak power system through a squirrel cage induction genera-
tor. For our study a back-to-back connected PWM controlled 
VSC was considered for a better control of the power flow. 
The power of the diesel generator is 910 kVA. 

The modeling has two stages. The first one uses the system 
directly connected to the grid just for the survey of the input 
and output pairs. The inputs are the mechanical power and the 
rotor speed, while the output is the estimated wind speed. The 
acquisition of the data set was carried out in the model directly 
connected in order to allow the sweepings of the rotor speed 
in the operation range of the turbine (which would not be pos-
sible in the system with back-to-back VSCs, with rotor speed 
specified by the control). This stage is shown in Figure 5. The 
second stage is concerned with real time implementation of a 
neural network to estimate the wind speed, considering the 
model where the wind turbine is connected to the grid through 
a back-to-back connected PWM converter. 

Figure 6 shows the wind profile used in the data survey for 
training the neural network. 

From this wind profile and the pre-selected values of the 
rotor speed, the mechanical power produced by the system 
was obtained, as shown in Figure 5. The rotor speed variation 
is between the range of 190 rad/s and 500 rad/s (total of 62 
values). There have been 100 values sampled from the wind 
profile shown in Figure 6 and the resulting mechanical power, 
forming a set of 6200 input/output pairs. Actually, this data set 
searches the curves as shown in Figure 7, which correspond to 
the mechanical power of the turbine as function of the wind 
speed, parameterized by the rotor speed. The input and output 
pairs are stepped, so that its variation can be settled between -
1 and 1 with average value almost null [3]. 

The neural network structure, which can be observed in 
Figure 8, consists of two layers, the first having five neurons 
with hyperbolic tangent activation function, and a linear neu-
ron in the output layer. The function to minimize was the 
quadratic average error, and the back-propagation algorithm 
was used with variable learning rate and batch training type 
[4, 3]. The 6200 input / output pairs have been divided into 
sets of training (60%), validation (20%) and test (20%). Over-
training was used as stop criterion. 

Figure 9 shows the evolution of errors for each of the sets 
throughout the training process. The error for the training set 
was 1.26% and 1.31% for the validation set in a total of 140 
epochs. 

Figure 10 shows the comparison between the wind speed in 
the test set (obtained from the original wind profile) and the 
wind speed estimated by the neural network. A good ap-
proximation between the two sets is observed.  The existing 
errors are due to the premature stopping of the training. 
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Fig. 5 Diagram of input and output calculation and neural network 

training  
 

IV.  SIMULATION RESULTS 
Given the wind profile shown in Figure 6, the wind system 

was simulated during 60 seconds and its performance can be 
compared with the conventional maximum power point track-
ing algorithm. Two cases have been studied: in the first, the 
neural network had as input the mechanical power and the 
rotor speed; in the second, the electric power and the rotor 
speed were the ANN inputs. 

Once the input / output pairs had been calculated for the 
training and the neural network is used in real time, it was 
necessary to format the data obtained from the wind system 
simulation and perform the inverse process for the use of the 
wind speed (ANN output). 

In the first case, according to (1), the optimum speed refer-
ence can be determined from the estimated wind speed. The 
curves in Figure 11 show the comparison between the esti-
mated speed reference and the speed reference calculated us-
ing conventional algorithm. A good agreement between both 
calculations can be observed. Figure 12 shows the comparison 
between the electric power of the generator obtained with the 
use of the conventional algorithm and the one obtained with 
the neural network. 
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Fig.7. Turbine power variation versus wind speed for some rotor 

speeds 

The conventional algorithm allows the turbine to operate 
close to the optimum point, where there is maximum electric 
power, given the instantaneous conditions of wind. The elec-
tric power obtained from the estimated wind is approximately 
the same as using the conventional algorithm. 

In the second case, Figure 13 shows the comparison be-
tween the speed reference and the one obtained from estima-
tion using the neural network and the conventional algorithm. 
The comparison between the electric powers obtained with the 
conventional algorithm and with the neural network is shown 
in Figure 14. In this in case, there are some speed differences 
(Figure 13) and power differences (Figure 14). This can be 
explained by the relation between the mechanical power and 
the electric power given by: 

 

m ele
dP P J
dt
ωω− =  ,                        (3) 
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Fig. 8 Structure of the neural network 
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Fig. 9. Error evolution during ANN training 
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Fig. 10. Comparison between estimated wind speed and test set 
 
 

where Pm is the mechanical power, Pele is the electric power, J 
is the inertia of the generator and ω is the mechanical speed of 
the rotor. There is a dynamic involving both powers. Addi-
tionally, in a steady state, the efficiency of the electric genera-
tor must be taken into account. 
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Fig. 11. Comparison between estimated speed and obtained from 

conventional algorithm (mechanical power as input in ANN) 
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Fig. 12. Comparison between induction generator electric powers 

obtained from neural network and conventional algorithm (mechani-
cal power as input in ANN) 

V.  CONCLUSION 
This work proposed a system for tracking maximum power 

point of a wind turbine using ANNs, eliminating the necessity 
of using sensors to measure wind speed.  

The results of the measured speed and its estimation have 
been compared, and this algorithm can be considered a viable 
alternative. The appropriate choosing of inputs, as well as the 
conditioning of all points, have made possible the fast conver-
gence in training the neural network. The trained ANN im-
plemented in the PSCAD/EMTDC proved efficient, not inter-
fering with the dynamics of the control system. 

The initial objectives have been reached, being possible to 
estimate wind speed with good accuracy. The substitution of 
mechanical power by electric power in the algorithm is an 
interesting alternative, considering how easy it is to obtain 
electric variables. This alternative could be considered for 
future works. 

Another proposal for this application is the implementation 
of the ANN in a DSP operation with fixed point calculation, 
using the technique known as hardware in the loop. This tech-
nique allows the communication between the DSP and a simu-
lator. 

The performance of DSP in power system models can be 
studied, without the necessity of a laboratorial prototype. 
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Fig. 13. Comparison between estimated speed and obtained from 

conventional algorithm (electric power as input in ANN) 
 

-0.2

0.0

0.2

0.4

2 12 22 32 42 52

El
ec

tri
c

Po
w

er
(M

W
)

Time (s)

Neural Network – Electric Power

Conventional Electric Power

-0.2

0.0

0.2

0.4

2 12 22 32 42 52

El
ec

tri
c

Po
w

er
(M

W
)

Time (s)
-0.2

0.0

0.2

0.4

2 12 22 32 42 52

El
ec

tri
c

Po
w

er
(M

W
)

Time (s)

Neural Network – Electric Power

Conventional Electric Power

 
Fig. 14. Comparison between induction generator electric powers 

obtained from neural network and conventional algorithm (electric 
power as input in ANN) 
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