
STATE FEEDBACK CONTROL FOR POLE LOCATION AND OPTIMAL
REJECTION OF DISTURBANCES APPLIED TO POWER ELECTRONICS

Vinı́cius F. Montagner† André E. Foletto⋆
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Abstract— This paper provides a control design tool suit-
able to compute the state feedback control matrix gain for
multiple-input multiple-output systems of arbitrary dime n-
sion ensuring: i) the stability by means of the location of all
the closed-loop poles in a specific region in the complex plane
and ii) the optimization of the disturbance rejection for the
closed-loop system. The region for pole location is defined
by the control designer by the choice of three parameters
that provide bounds for the natural frequency, settling time
and dumping factor of all the transient responses of the
closed-loop system. The control design tool given here is
written as a convex optimization problem, which brings the
great advantage of providing the global optimal controller
within a finite and previously estimated computational time,
thus avoiding iterative design procedures which do not
have any guarantee of convergence to the global optimal
solution in a finite time. The investigation of tradeoffs
between the pole location and the rejection of disturbances
and also the problem of non-fragility of the controller are
addressed. An application of the design tool to synthesize a
proportional-integral controller to the regulation of vel ocity
of an induction motor illustrates the efficiency of the results
given in the paper.

Keywords – Optimal control; Convex optimization; H∞

control; Pole location; Non-fragile control; PI regulator.

I. INTRODUCTION

The computation of a state feedback controller which
assigns all the poles of a liner time-invariant system at
desired places in the complex plane is undoubtedly an
important control design problem, since it allows to shape
the closed-loop transient response by determining param-
eters as overshoot, natural frequency and settling time [1,
2, 5, 12]. Although it is known that when the system is
controllable, one can assign the closed-loop poles at the
desired places using standard pole placement techniques,
the determination of the state feedback controller which
ensures the desired pole location and, simultaneously,
provides the optimal rejection of disturbances can be a
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difficult task to be handled using classical control tech-
niques, which usually involve iterative procedures without
any guaranteed of convergence to the optimal controller.

This paper provides a systematic solution for the above
control design problem for multiple-input multiple-output
(MIMO) systems of arbitrary dimension. The control
problem is written as a convex optimization problem
with linear matrix inequality (LMI – [4]) constraints, as
in [6], and is equivalent to the problem of determining
the state feedback control matrix gain which minimizes
the H∞ norm of the closed-loop system (i.e. optimizes
the rejection of energy bounded disturbances) under a
prescribed pole location specification. The pole location
specification is chosena priori by the control designer,
allowing to impose the desired bounds for natural fre-
quency, settling time and dumping factor for all the closed-
loop transient responses. The formulation of the design
problem as a convex optimization problem with LMI
constraints provides guarantee of finding, in a previously
estimated computational time, a controller which ensures
the global optimal rejection of disturbances respecting the
pole location specifications, which is a great advantage
when compared to methods which search the controller
using discretization in the space of the controller and also
when compared to methods based on the use of more
advanced heuristics, as for instance genetic algorithms, to
search the control matrix gain, but which do not have any
guarantee of finding the global optimizing controller in
a finite computational time and also are very sensitive
to initialization. The result is extended to cope with
the investigation of tradeoffs between the pole location
specifications and the level of rejection of disturbances
and also to cope with the problem of non-fragile control
[7, 9]. As an application to power electronics, the proposed
design conditions are employed to compute the gains of
a proportional-integral (PI) controller used for velocity
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regulation of an induction motor, illustrating the efficiency
of the control design tool given in the paper.

II. PROBLEM FORMULATION

Consider the linear time-invariant MIMO system given
by

ẋ = Ax + Bww + Buu (1)

y = Cx + Dww + Duu (2)

wherex ∈ IRn is the state vector,w ∈ IRq is the vector of
disturbance inputs,u ∈ IRm is the vector of control inputs
andy ∈ IRp is the vector of controlled outputs. Matrices
A, Bw, Bu, C, Dw and Du are real valued matrices of
appropriate dimension.

For the state feedback control law

u = Kx , K ∈ IRm×n (3)

where the control matrix gainK is to be determined,
system (1)-(2) can be rewritten in the closed-loop form
as

ẋ = Aclx + Bww , Acl , A + BuK (4)

y = Cclx + Dww , Ccl , C + DuK (5)

The main objective of this paper is to provide a control
design tool to solve the following problem.

Problem 1: Determine the control matrix gainK for
the state feedback control law (3) such that the following
properties are ensured:

• i) all the eigenvalues of the closed-loop matrix
Acl (i.e. closed-loop poles) belong to the region
S(r, α, θ), shown in Figure 1, wherer > 0, 0 <

α < r and 0 < θ ≤ π/2 are chosen by the control
designer.
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S(r, α, θ)

Fig. 1. RegionS(r, α, θ), located at the open left-hand side of the
complex plane, and defined by the intersection of a circle centered at
the origin with radiusr > 0, the strip at left of−α, 0 < α < r and
the sector with angle0 < θ ≤ π/2;

• ii) the H∞ norm [4] of the closed-loop system,
defined as

sup
‖y‖2

‖w‖2

, ∀w ∈ L2 , w 6= 0 , x(0) = 0 (6)

is minimized.

Remark 1: It is important to observe that the location of
all the closed-loop poles in the regionS(r, α, θ) (property
i) in Problem 1) ensures that the transient responses of the
closed-loop system will always respect prescribed bounds
for natural frequencywn, settling timeτs and dumping
factor ξ. Specifically, these bounds can be given by

wn ≤ r , τs ≤ 5

α
, cos θ ≤ ξ ≤ 1 (7)

Remark 2: It is also important to notice that the min-
imization of theH∞ norm (property ii) in Problem 1)
provides the best rejection of disturbancesw ∈ L2 (i.e.
energy bounded disturbances) for the closed-loop system.

Remark 3:Problem 1 focuses on the determination of
the state feedback control matrix gainK that ensures,
simultaneously, properties i) and ii). It is known that if the
pair (A, Bu) is controllable, one can easily handle the as-
signment of the closed-loop poles in the regionS(r, α, θ)

by means of pole placement techniques. However, the
determination ofK which ensures the pole location con-
straints (property i) in Problem 1) and, simultaneously,
optimizes globally the rejection of disturbances for the
closed-loop system (property ii) in Problem 1) is a more
involving problem.

III. DESIGN CONDITIONS

The next theorem, based on the results from [6], pro-
vides a solution for Problem 1 by means of a convex
optimization problem with LMI constraints (see [4, 8] for
details on this class of optimization problems).

Theorem 1:Givenr > 0, 0 < α < r and0 ≤ θ ≤ π/2,
which define the regionS(r, α, θ). If there exist matrices
W = W ′ ∈ IRn×n andZ ∈ IRm×n and a scalarµ ∈ IR

solving the following convex optimization problem

µ⋆ , min
W,Z,µ

µ s.t.

AW + WA′ + BuZ + Z ′B′
u + 2αW < 0 (8)

[

−rW AW + BuZ
WA′ + Z ′B′

u −rW

]

< 0 (9)

[

sin θ(T11) cos θ(T12)
cos θ(T12)

′ sin θ(T11)

]

< 0 (10)

T11 , AW + WA′ + BuZ + Z ′B′
u
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T12 , AW + BuZ − WA′ − Z ′B′
u





T11 Bw WC′ + Z ′D′
u

B′
w −I D′

w

CW + DuZ Dw −µI



 < 0 (11)

then the state feedback control matrix gain

K = ZW−1 (12)

ensures: i) that all the closed-loop poles belong to the
regionS(r, α, θ) and ii) that theH∞ norm of the closed-
loop system, given byγ =

√
µ⋆, is minimized.

Proof: If Theorem 1 has a solution, then, using
the variable transformationZ = KW , given in [3],
one recovers from (8)-(11) the LMIs given in [6], which
ensure the location of the closed-loop poles in the region
S(r, α, θ) (LMIs (8)-(10)) and, simultaneously, imposes
the minimization of theH∞ norm of the closed-loop
system (LMI (11)).

Remark 4:The solution of Problem 1 by means of a
convex optimization problem, as in Theorem 1, is very at-
tractive from the computational point of view, since avail-
able algorithms as the LMI Control Toolbox from Matlab
[8] provide the global optimal solution to the problem
in polynomial time. Specifically, the convex optimization
problem in Theorem 1 can be read as minimizeµ over
the variablesW , Z andµ subject to the LMI constraints
(8)-(11). The number of scalar variables to be determined
is V = 1 + n(n + 1)/2 + mn and the number of LMI
rows isR = 6n+ p+ q. Interior point based LMI solvers
as [8] have guarantee of global convergence to the global
optimal solution in a computational time proportional to
V3R. This represents a great advantage against solutions
for Problem 1 based on exhaustive gridding procedures to
search the control matrix gainK in an unbounded space
(IRm×n). Approaches based on more complex heuristics
to searchK, as for instance as genetic algorithms, usually
lead to suboptimal solutions, with no guarantee of global
convergence in finite time and also can be very sensitive
to initialization. The conditions in Theorem 1 overcome
all these difficulties, being a very efficient solution for
Problem 1.

Remark 5:Notice that Theorem 1 provides a control
design tool for MIMO systems of arbitrary dimension.
The control designer choose the parametersr, α andθ for
pole location inS(r, α, θ) and also provides the matrices
A, Bw, Bu, C, Dw andDu of the system model. Then,
if Theorem 1 has a solution, given by matricesW , Z

and by the scalarµ⋆, one has thatK = ZW−1 is the
control gain ensuring the prescribed pole location with the
global optimal disturbance rejection (i.e. minimumH∞

norm given byγ =
√

µ⋆).

The following corollaries extend the results from The-
orem 1 to deal with the investigation of tradeoffs between
pole location and rejection of disturbance, to handle de-
centralized control synthesis and to cope with non-fragile
control.

Corollary 1: Givenr > 0 and0 < α < r. The solution
of Theorem 1 for values ofθ in the interval0 < θ ≤
π/2 allows to investigate the tradeoff betweenγ, which
measures the system capacity of rejection of disturbances,
and θ, which provides a lower bound for the dumping
factor (7).

Remark 6:Tradeoffs betweenγ andα and betweenγ
and r can be investigated following the ideas in Corol-
lary 1. In general, the more stringent the pole location
specification, the poorer the rejection of disturbances.

Corollary 2: The solution of Theorem 1 for block-
diagonal matrix variablesW and Z yields a block-
diagonal control matrix gain, which can be suitable to
deal with decentralized control or static output feedback
(see, for instance, [11]).

Corollary 3: Given r > 0, 0 < α < r, 0 < θ ≤ π/2

and 0 ≤ δ < 1. If there exists a solution for Theorem 1
with matrix Z replaced byZ(1 ± δ) in each LMI1 then
any state feedback control matrix gainK ∈ K, where2

K = {K ∈ IRm×n :

K =
(

σ1(1 − δ) + σ2(1 + δ)
)

ZW−1,

σi ∈ IR+ , i = 1, 2 , σ1 + σ2 = 1} (13)

ensures that the closed-loop poles belong to the region
S(r, α, θ) and thatγ =

√
µ⋆ is an upper bound on theH∞

norm of the closed-loop system, called anH∞ guaranteed
cost for the closed-loop system.

Proof: To prove Corollary 3, notice that replacing
Z by Z(1 ± δ) in the LMIs of Theorem 1 one has,
from convexity [4], that the state feedback control matrix
gain given by any convex combination of(1 − δ)ZW−1

and (1 + δ)ZW−1 ensures that the closed-loop poles
are assigned inS(r, α, θ) and thatγ =

√
µ⋆ is an H∞

guaranteed cost for the closed-loop system.
Remark 7:Corollary 3 provides a solution for the

problem of robustness to a perturbationδ on the control
matrix gain (δ = 0 means no perturbation), which is a
problem of non-fragile control [7, 9]. Such perturbation on
the control matrix gain can occur in practice, for instance,
due to the implementation of the controller on a platform
with limited precision and also due to slow variation of
the gains of the controller which may happen during

1The symbol± means that each LMI in Theorem 1 is placed by two
LMIs in Corollary 3: one LMI withZ replaced byZ(1+δ) and another
LMI with Z replaced byZ(1 − δ).

2The setIR+ represents all nonnegative reals.
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operation. Corollary 3 allows to the control designer to
use the information on the value of the perturbationδ in
the control synthesis. Notice that any of the control matrix
gains in the setK ensures the prescribed pole location with
a guaranteed rejection of disturbance.

Remark 8:The solution of Corollary 3 for vales ofδ in
the interval0 ≤ δ < 1 allows to investigate the tradeoff
betweenγ (capacity of rejection of disturbances) andδ

(perturbation on the control matrix gain).
Remark 9:Concerning practical implementation, dis-

cretization can be used to implement the continuous-time
control strategy given here by means of digital platforms.
Moreover, the estimated state vector, provided by state
observers, can be employed in the state feedback control
law.

IV. EXAMPLE

This section illustrates the application of the control
design conditions provided previously to synthesize the
gains of an optimal PI controller applied to the regulation
of velocity of an induction motor whose parameters are
given in [10, Chapter 3]. The closed-loop control system
is given in Figure 2, whereρ is a constant reference
input, e is the regulation error,uc is the output of the
PI controller,w is an energy bounded disturbance input,
u is the control input which drives the plant andy is the
plant controlled output (velocity of the induction motor).
The transfer functions of the controller and of the plant

ρ e

w

yuuc
Gp(s)Gc(s)

+

+

−

−

Fig. 2. PI controller (Gc) applied to the velocity regulation of an
induction motor (Gp).

are given, respectively, by

Gc(s) = kp +
ki

s
, Gp(s) =

b0

s + a0

(14)

where kp and ki are real parameters to be determined
(gains of the controller) anda0 andb0 are the parameters
of the plant.

Observe that the transfer function from the reference
ρ to the outputy, represented byGyρ(s), is such that
Gyρ(0) = 1, thus ensuring zero steady state error to
any constant reference input. Moreover, defining

∫

e ,
∫ t

0
e(β)dβ, one can write the control system from Figure 2

in the following state space representation

ε̇ = Aε + Bww + Buc
uc + Bρρ (15)

y = Cε + Dww + Duc
uc + Dρρ (16)

where

ε =

[ ∫

e
e

]

, A =

[

0 1
0 −a0

]

, Bw =

[

0
b0

]

,

Buc
=

[

0
−b0

]

, Bρ =

[

0
a0

]

, C =
[

0 −1
]

,

Dw = 0 , Duc
= 0 , Dρ = 1

It is very important to notice that the problem of
determining the gains of the PI controller which drives the
error vectorε of system (15)-(16) to zero with a prescribed
dynamic and, simultaneously, ensures the optimal rejec-
tion of the disturbancew can be tackled as the problem
of computing the gainskp and ki of the state feedback
control law

uc =
[

ki kp

]

[ ∫

e
e

]

(17)

for system (15)-(16), withρ = 0, such that the poles
of the closed-loop system belong to a prescribed region
S(r, α, θ) and theH∞ norm of the closed-loop system is
minimized. Theorem 1 is precisely a design tool which
solves this problem. Using the parameters for the induc-
tion motor from [10, Chapter 3], one hasa0 = 0.1 and
b0 = 100, which define the matricesA, Bw, Buc

, C,
Dw and Duc

for system (15)-(16). The parameters for
the regionS(r, α, θ) are chosen asr = 200, α = 20 and
θ = π/12. In this case, the Theorem 1 provides as solution

K =
[

ki kp

]

=
[

40.6517 2.1957
]

(18)

and
γ = 0.5424

The eigenvalues ofA+Buc
K (i.e. closed-loop poles) are

given by−20.3999 and−199.2744, thus belonging to the
regionS(r, α, θ).

It is worth to mention that the control gains (18) were
obtained solving Theorem 1 using the LMI Control Tool-
box from Matlab running in a notebook with a1.66 GHz

Core Duo processor and with1 GB of RAM, spending
a computational time of0.14 seconds, which shows the
rapid convergence of the design tool provided here to
the global optimal controller, without using any complex
heuristic or exhaustive computational procedure to search
the control gains.

To illustrate the good quality of the results, some
dynamic simulation of the closed-loop system are carried
out. For instance, the response of the closed-loop system
with w = 0 and with a constant reference given equal to
45 rad/s is given in Figure 3. Notice the fast transient
response, provided by the closed-loop poles inside chosen
region, and no steady state error, as expected.

Figure 4 shows the closed-loop system response to a
disturbancew, measured inNm, applied from3 ≤ t ≤ 5
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Fig. 3. Transient response in the start of the system with thegains of
the PI controller given by (18).y andρ are measured inrad/s.

seconds. Again, one can notice the fast transient response
in the recover from the disturbance action, with a good
rejection of the disturbance provided by the design based
on the minimization of theH∞ norm. For a comparison,
one has that the response using the proposed design
condition for the PI controller, given in Figure 4, ex-
hibits faster transients, with smaller deviations from the
reference than those in the response provided by the PI
adaptive controller given in [10, Chapter 3].
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Fig. 4. Response of the closed-loop system with PI controller given
by (18) for an energy bounded disturbancew, measured inNm. y is
measured inrad/s.

Figure 5 provides a detail on the regulation error for the
simulation of the closed-loop system with PI controller
given by (18) with referenceρ = 0 and for the same
energy bounded disturbance used in the simulation from
Figure 4, which leads to‖e‖2/‖w‖2 = 0.1272 < γ =

0.5424, thus corroborating the rejection of disturbance
provided by theH∞ norm.

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2
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0.8

1

t(s)

w

e

Fig. 5. Detail on the regulation error in the interval of application of
the disturbance, for reference equals to zero.e is measured inrad/s

andw is measured inNm.

Finally, to have an evaluation of non-fragility of the
controller obtained with the design techniques given here,
Figure 6 shows the tradeoff between the perturbation on
the control gains,δ, and the value of theH∞ guaranteed
cost (upper bound on theH∞ norm) of the closed-loop
system provided by Corollary 3. The point marked with⋄
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1
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γ

δ

Fig. 6. Tradeoff between the perturbationδ on the control gains and
the value of theH∞ guaranteed cost of the closed-loop system.

on the curve of Figure 6 is obtained solving Corollary 3
for r = 200, α = 20, θ = π/12 and δ = .1 (i.e. a
perturbation of±10% on the control gains). In this case,
Corollary 3 yields as solution the matrices

W =

[

0.0256 −0.8308
−0.8308 84.0773

]
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and
Z =

[

−0.7290 137.8418
]

allowing to obtain the set of control gains

K = {K ∈ IR1×2 : K = (σ1(1−δ)+σ2(1+δ))ZW−1

= (σ1(1 − δ) + σ2(1 + δ))
[

36.3841 1.9990
]

,

σi ∈ IR+ , i = 1, 2 , σ1 + σ2 = 1 , δ = 0.1} (19)

which ensures the above described pole location and an
H∞ guaranteed cost given byγ = 0.6921. In other words,
any of the gainsK = [ki kp] in the setK ensures to
the closed-loop system the pole location in the region
S(r, α, θ), with r = 200, α = 20, θ = π/12 and also
ensures that‖e‖2 < 0.6921‖w‖2, ∀w ∈ L2, w 6= 0. This
illustrates operation with guaranteed performance for the
closed-loop system under a perturbationδ affecting the
control gains.

V. CONCLUSION

This paper provides a tool (Theorem 1) to synthesize
the control matrix gain for state feedback control laws
applied to MIMO systems of arbitrary dimension. The
design tool is given by means of a convex optimization
problem whose solution yields the control matrix gain
which ensures the pole location inside a regionS(r, α, θ)

chosena priori by the control designer and also optimizes
the rejection of energy bounded disturbances for the
closed-loop system. The choice of the parameters of the
region for pole location allows to impose bounds on the
natural frequency, settling time and dumping factor for all
transient responses of the closed-loop system. Extensions
to deal with the investigation of tradeoffs between pole
location and rejection of disturbance, to handle decen-
tralized control and also to cope with non-fragile control
are provided (corollaries 1 to 3, respectively). The main
advantage of the conditions given here is the formulation

based on convex optimization with LMI constraints for
which there exists globally convergent algorithms that
provide the global optimal solution in a finite and previ-
ously estimated computational time. The efficiency of the
conditions provided in the paper is illustrated by means
of an example of application to the design of a global
optimal PI controller applied to the regulation of velocity
of an induction motor.
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