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Abstract— Two digital output feedback control laws are This paper aims on the use of quadratic Lyapunov
investigated in this paper aiming on the robust pole locatia  functions to obtain the gains of two digital output feed-
for an electrical circuit commonly used in power electronics back control laws applied to ensure robust pole location
and supposed here as affected by uncertain parameters. One . o .
of the control laws has an unitary delay and the other fOF @ second order electrical circuit commonly used in
is delay free. For each control law, a convex optimization power electronics applications. Differently from usual
problem based on a quadratic Lyapunov function is pro- approaches, the circuit parameters are supposed here as
vided, allowing to find the control gains which minimize the ,catain parameters. The first control law is not affected
radius of a circle, placed inside the unit circle, where the by del d th d N is aff db
poles of the uncertain closed-loop system are located. This y_ elay and the second control law Is affected by an
ensures to the closed-loop system a transient response that unitary delay on feedback. For each one of the control
the best approximation of a deadbeat response guaranteed laws, the design problem is to find the control gains which
by a quadratic Lyapunov function for the set of uncertain  minimize the radius of a circle centered at the origin of
parameters under consideration. Numerical results illustate th | | d included in th it circl hich
the efficiency of the proposed conditions. € C(_)mp €x plane and included in the uni C|rc_ € whic

contains all the poles of the closed-loop uncertain system.

Keywords — Convex optimization; Delayed systems; Lya- This problem can be recast as a convex optimization
punov gmt():nons; lOultput feedback control; Polytopic uncer 551 em for which the proposed conditions allow to get
tainty; Robust pole location. : . : -

Y P the control gains which provide the global minimum value
of the radius of the circle for pole location under quadratic
stability. Numerical results illustrate the efficiency biet

The approach based on Lyapunov functions has eonditions given in the paper.
fundamental importance in system analysis and control. Il. SYSTEM MODELING
From this approach, one has that the existence of aC ider th ' lectrical Gircuit in Ei 1 which q
positive function of the system state variables whose time- onsider the elecirical circuit in Figure 1, which Is use

derivative is negative (i.e. a Lyapunov function) ensure8S @ stagg in ;everal power electronics gpplications, as for
the system (open-loop or closed-loop) stability [8]. Thdnstance in u_nmterruptlble power supplies, in AC power
problem of searching a Lyapunov function, which is theourees and in DC-DC converters [7].

main difficulty with this methodology, can be regarded L

for many systems as a problem of solving linear matrix
inequalities [4], for which available interior point baset
algorithms, as for instance [6], provide a solution in poly- + n
nomial time, whenever a solution exists. Since the linear ult) yt)=Cc SR
matrix inequalities used to search a Lyapunov function
must take into account the system dynamics, the solution
for the problem becomes more involved when the system
model incorporates, for instance, uncertain parametets an
nonlinearities [1, 3,5, 8,10-16]. Fig. 1. Second order electrical circuit.

I. INTRODUCTION

TCorresponding author This circuit is the plant to be controlled here by
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means of digital control techniques, wheuét) is the and(ag,as,bo,b1) € Ha.
control input, driven by a switching power electric ciruit Observe also that(L, C, R) € H,, it follows that

considered as the actuator of the system, gftd is the 4 €, ={a1 €R:ay < ay <ar}
controlled output. Differently from usual approaches, in a0 € Quy = {ao € R : ag < ap < @0}
this paper the parametefs(inductance)(’ (capacitance) biey ={beR: by < by < )
and R (resistance) are assumed as uncertain parameters bo € Uy, = {bo € IR : bo < by < bo)

belonging t | tint Is gi b
elonging o eal compact intervals given by which allows to include system (5)-(6) in the polytopic

LeQ,={LeR}:L<L<L} system [4]
CeQe={CeRL:C<C<LC(} 1) B
REQRZ{RERQ:ESRSE} z(k+1) = A(a)x(k) + Bu(k) @)
for which the lower and upper bounds are known. y(k) = Cla)u(k) (®)
The transfer function of the system in Figure 1 is giverwhere
by 16 16
) Ala) =) ;45 , Cla) =) a;C;
Y (s) w;, = =

U(s) 82 +28wps+wp and A; andCj, j = 1,...,16 are the vertices of the
1 ¢ = 1 JL @ polytopes of matricesA(«) and C'(«). The vector of
Wn = VLC '~ 2RV C uncertain parameters, belongs to the unit simplex

wherew,, and¢ also belong to real compact intervals.

16
_ 16 . _ 4 —
Assuming thatu(t) is the average value of the voltage!! = {aceRT Za] =1,0;20,j5=1,...,16}

pulse produced by the actuator during the sampling period =1 9)
T, one obtam‘s, by- means-of the zero-order hold method pamark 1: Any property valid for the polytopic system
[2], the fO”OWIng discrete-time model of the plant (7)-(8) is also valid for System (5)-(6), since (5)_(6) is
Y(2)  biz+bo 3) included in (7)-(8).
U(z) 2*+amz+ag ll. PROBLEM FORMULATION
where The main objective of this paper is to solve problems 1
) Wy, and 2, described in the sequel.
ar=—=2af , ap=a”, by =1-a(f+ gw_17) ’ Problem 1: Consider the output feedback control law
%:az+Mé%77m,uq:wmﬂef2, u(k) = koy(k) (10)
1
a = exp (—&wnT) , B =cos(wT) , v=sin(w,T) which allows to write the control system (7)-(8) as
(4) z(k+1) = Aa(a, ko)z(k) (11)

Notice that V(L,C, R) € {Q1 x Qc x Qr} £ H., one  where
has that(ag, a1, bo, b1) € Ha, WhereH, is the subset of 16
IR* obtained from the nonlinear functions (4) applied to Ago, ko) = ZajAclj(/fo) L acU,
every(L,C,R) € H,. =

The transfer function (3) admits the space state repre- Acz‘i(k?o) — A +kBC;, j=1,...,16
sentation ! ! ]7 Y
Find ko € Ko, where
k+1)=A k) + Bu(k 5 — _
z(k +1) = Aa(ao, ar)x(k) + Bu(k) ®) Ko 2 {kg ko + ..., Fo — 8o} (12)
y(k) = Ca(bo, b1)x(k) ©) for which there exists a quadratic Lyapunov function
Ag(ag, ar) = [ _(210 _la1 } , ensuring the solution for the optimization probkem

A .
Tpy = Mingecic, T S.t.

0 0<r<1 (14)
B: ) C b ab = b b |
[ ] a(bo,b1) = [ bo b1 | max | A A (o, ko)) <7, Va elU

1The symbolx between intervals represents Cartesian productfand 2)\(.) represents the operator which extracts the eigenvalues of a
means equal by definition. square matrix.
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Remark 2:Notice from Problem 1 that one must find Remarks similar to remarks 2 to 4 are applicable to
ko in a finite set, defined by, ko andd. These values Problem 2.
can be based, for instance, on the limits of precision of Remark 5:Observe that due to the unitary delay on the
the digital platform used to implement the controller.  feedback, which can arise for instance from measurement
Remark 3:The optimization problem described inand processing delay, the closed-loop system (16) requires
Problem 1 can be read as firid € Ky which minimizes one more state variable to be described when compared to
the upper bound for the maximum absolute value ofhe closed-loop system for the system without delay (11).
the closed-loop poles, based on quadratic stability. The
solution for this problem provides a controller which IV. MAIN RESULTS

ensures the minimum upper bound for the settling time of Solutions for problems 1 and 2 are given in this section,

the state trajectories in the transient response of thedios . A
based on the solution of convex optimization problems

loop system based on the quadratic Lyapunov function . : :
o . called generalized eigenvalue problems [4]. This class

(13). Moreover, it is clear that the solution of (14) ensures T
of optimization problems has the great advantage of

that max |A (A (o, ko))| < 1, Yo € U, thus guaranteeing | . !
. o being solvable by globally convergent algorithms, as for
the global asymptotic stability of the closed-loop system : . : o
. S " Ihstance [6], which provide the global optimal solution in
that is, for any initial condition:(0), 2(co) = 0.

. polynomial time.
Remark 4:From Remark 3, one has that the solutior? o~ . .
for (14) guarantees the location of the poles of the closed- Theorem 1:Givenk, € Ko. If, and only if, there exists

L . . ; o a solution for the following convex optimization problem:
loop system inside a circle included in the unit circle for 9 P P

the entire set of uncertain parameters, that is, the solutio (ko) & minp_prege<z 7
for (14) provides robust pole location with respect to the S.t.
uncertain parameters € U. 0<r<i1
Problem 2: Consider the output feedback control law PATP(k ) Acij (fDO)/P >0,7=1,...,16
. . iy r
with unitary delay 15\r0 (20)
u(k) =kiy(k—1) (15) then (13) is a quadratic Lyapunov function ensuring that

maX|)\(Acl(a, ko))l < T*(ko), for all o € U.

Proof: For a givenk, € Ky and for a giverd < r <
Z(k+1) = Acl(a, k1)Z (k) (16) 1, one has that the existence Bf= P’ > 0 solving the
linear matrix inequality

which allows to write the control system (7)-(8) as

where (k) = [xo(k) x1(k) xz2(k)]" and

Ao ko) Au(on k
" l(‘i o) p l(f J_peo.Vacu (1)
Aalaykr) =) ajAai(kr) , a €l is necessary and sufficient fonax |\(Aq (o, ko))| < 7,
J=1 for all & € U, under quadratic stability [9]. By applying

Aqj(ki) = A; +k1BC; , j=1,...,16 Schur complement and by taking into account the con-
vexity of U, one has that the matrix inequality in (20)

with is necessary and sufficient to ensure (21). The global
i - 0 L I— [ 10 ] minimum value ofr solving the matrix inequality in

T M OA T ’ (20), defined as*(ko), can be obtained by means of the

- solution of the generalized eigenvalue problem (20) [4].

w-[8] 58] amto e genereed g pelen () 4

Corollary 1: From all ky € Ko which fulfill (20), the
solution of Problem 1 is given by, which provide the
Ky 2 ki, ki +6,... k1 — 6,k } (17) minimum value ofr*(kg), calledry,.

Theorem 2:Givenk; € K;. If, and only if, there exists
a solution for the following convex optimization problem:

Find k; € K1, where

for which there exists a quadratic Lyapunov function

v(i(k)) = & (k) Pi(k) (18) r* (k1) £ ming_pcpsxs T
ensuring the solution for the optimization problem: 0 <ST:t'< 1
A . ~ ~ T
The = Ming, ¢xc, 7 S.t. rP Acj(kr)' P .
. - =1,...,1
0<r<i1 (19) PAu; (k1) P >0,j=1...,16

max |A(Ag(a, k1)) <7, Yaeld (22)
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then (18) is a quadratic Lyapunov function ensuring thatnder quadratic stability for the uncertain system (robust

max [N(Agq(a, k1)) < r*(k1), for all a € U.

pole location). Numerical comparisons illustrate that the

Proof: Follows the ideas in the proof of Theorem 1.control law subject to delay provides better robust pole

[ |
Corollary 2: From all k; € Ky which fulfill (22), the
solution of Problem 2 is given b¥; which provide the

location under quadratic stability. The proposed condgio
can also be used to solve the output feedback design
problems given here when the system is not affected by
uncertainties, by simply employing fixed matricés (ko)

minimum value ofr*(k, ), calledr}.,.

and flcl(kl) in the related theorems, instead of sets of

V. NUMERICAL RESULTS

matrices. The proposed synthesis conditions can also be

The next examples present a comparison between baipplied as a robust stabilization stage in problems of
control laws in the solution of problems 1 and 2. Inregulation and tracking. Finally, although the resultséhav
the first example, onlyR is considered as an uncertainbeen derived for a specific electrical circuit and for unitar
parameter in the plant, lying on a wide interval. In thedelay, the methodology can be extended to other circuits
second examplel,, C' and R are supposed as uncertainwith uncertain parameters as well as to cope with multiple
parameters withl0% of perturbation around their nom- delays affecting the output feedback.

inal values. For both examples, the sampling period is
T = 1/1800 s and the setsCy and K; are given by
{—1,-1+40.01,...,1}. (1
Example 1:Consider that the parameters of the planty
are given by:24Q < R < 1MQ, L = 3 mH and
C = 120pF. The solution for Problem 1, provided by Bl
Corollary 1, isr5, = 0.99, being this optimal value
guaranteed by any of the valueskgfin the set{0.4,0.4+
0.01,...,0.67}. The solution for Problem 2, provided by
Corollary 2, isrp, = 0.77, for the values ofk; in the
set{0.52,0.53}. Notice the considerable improvement on [°]
the minimization of the upper bound of the maximum
absolute value of the closed-loop poles based on quadratic
stability provided by the control law (15) (with delay) (6]
when compared to the control law (10) (without delay)

(4]

for this example. [7]
Example 2:Define R, = 249, L, = 3 mH and 8]

C, = 120puF and consider0.9R, < R < 1.1R,,

09L, < L < 1.1L, and 0.9C, < C < 1.1C,.

Corollary 1 does not provide any solution for Problem 1
in this case. On the other hand, Corollary 2 yieldls =
0.83 as a solution for Problem 2 for any value 6f
belonging to the sef0.44,0.45,0.46}, thus illustrating
again the superiority of control law (15) (with delay) to
solve the problem of minimization of the upper boun
of the maximum absolute value of the closed-loop poles
under quadratic stability.

(10]

(12]
VI. CONCLUSION

This paper investigates the stabilization of a planﬁ13]
given by a second order electrical circuit with uncertain
parameters by means of two digital output feedback4]
control laws:u(k) = koy(k) (without delay) andu(k) =
k1y(k — 1) (with delay). For each control law, a convex
optimization problem is proposed, allowing to find the
value of the control gain inside previously given finite
sets which provides the global minimum upper bound
for the maximum absolute value of the closed-loop poles

[15]
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