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Abstract— Two digital output feedback control laws are
investigated in this paper aiming on the robust pole location
for an electrical circuit commonly used in power electronics
and supposed here as affected by uncertain parameters. One
of the control laws has an unitary delay and the other
is delay free. For each control law, a convex optimization
problem based on a quadratic Lyapunov function is pro-
vided, allowing to find the control gains which minimize the
radius of a circle, placed inside the unit circle, where the
poles of the uncertain closed-loop system are located. This
ensures to the closed-loop system a transient response thatis
the best approximation of a deadbeat response guaranteed
by a quadratic Lyapunov function for the set of uncertain
parameters under consideration. Numerical results illustrate
the efficiency of the proposed conditions.
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I. INTRODUCTION

The approach based on Lyapunov functions has a
fundamental importance in system analysis and control.
From this approach, one has that the existence of a
positive function of the system state variables whose time-
derivative is negative (i.e. a Lyapunov function) ensures
the system (open-loop or closed-loop) stability [8]. The
problem of searching a Lyapunov function, which is the
main difficulty with this methodology, can be regarded
for many systems as a problem of solving linear matrix
inequalities [4], for which available interior point based
algorithms, as for instance [6], provide a solution in poly-
nomial time, whenever a solution exists. Since the linear
matrix inequalities used to search a Lyapunov function
must take into account the system dynamics, the solution
for the problem becomes more involved when the system
model incorporates, for instance, uncertain parameters and
nonlinearities [1, 3, 5, 8, 10–16].
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This paper aims on the use of quadratic Lyapunov
functions to obtain the gains of two digital output feed-
back control laws applied to ensure robust pole location
for a second order electrical circuit commonly used in
power electronics applications. Differently from usual
approaches, the circuit parameters are supposed here as
uncertain parameters. The first control law is not affected
by delay and the second control law is affected by an
unitary delay on feedback. For each one of the control
laws, the design problem is to find the control gains which
minimize the radius of a circle centered at the origin of
the complex plane and included in the unit circle which
contains all the poles of the closed-loop uncertain system.
This problem can be recast as a convex optimization
problem for which the proposed conditions allow to get
the control gains which provide the global minimum value
of the radius of the circle for pole location under quadratic
stability. Numerical results illustrate the efficiency of the
conditions given in the paper.

II. SYSTEM MODELING

Consider the electrical circuit in Figure 1, which is used
as a stage in several power electronics applications, as for
instance in uninterruptible power supplies, in AC power
sources and in DC-DC converters [7].

L

C Ry(t)u(t)

Fig. 1. Second order electrical circuit.

This circuit is the plant to be controlled here by
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means of digital control techniques, whereu(t) is the
control input, driven by a switching power electric circuit,
considered as the actuator of the system, andy(t) is the
controlled output. Differently from usual approaches, in
this paper the parametersL (inductance),C (capacitance)
and R (resistance) are assumed as uncertain parameters
belonging to real compact intervals given by

L ∈ ΩL = {L ∈ IR⋆
+ : L ≤ L ≤ L}

C ∈ ΩC = {C ∈ IR⋆
+ : C ≤ C ≤ C}

R ∈ ΩR = {R ∈ IR⋆
+ : R ≤ R ≤ R}

(1)

for which the lower and upper bounds are known.
The transfer function of the system in Figure 1 is given

by

Y (s)

U(s)
=

w2
n

s2 + 2ξwns + w2
n

,

wn =
1√
LC

, ξ =
1

2R

√

L

C
(2)

wherewn andξ also belong to real compact intervals.
Assuming thatu(t) is the average value of the voltage

pulse produced by the actuator during the sampling period
T , one obtains, by means of the zero-order hold method
[2], the following discrete-time model of the plant

Y (z)

U(z)
=

b1z + b0

z2 + a1z + a0

(3)

where

a1 = −2αβ , a0 = α2 , b1 = 1 − α(β + ξ
wn

w1

γ) ,

b0 = α2 + α(ξ
wn

w1

γ − β) , w1 = wn

√

1 − ξ2 ,

α = exp (−ξwnT ) , β = cos (w1T ) , γ = sin (w1T )
(4)

Notice that1 ∀(L, C, R) ∈ {ΩL×ΩC ×ΩR} , Hc, one
has that(a0, a1, b0, b1) ∈ Hd, whereHd is the subset of
IR4 obtained from the nonlinear functions (4) applied to
every(L, C, R) ∈ Hc.

The transfer function (3) admits the space state repre-
sentation

x(k + 1) = Ad(a0, a1)x(k) + Bu(k) (5)

y(k) = Cd(b0, b1)x(k) (6)

wherex(k) = [x1(k) x2(k)]′,

Ad(a0, a1) =

[

0 1
−a0 −a1

]

,

B =

[

0
1

]

, Cd(b0, b1) =
[

b0 b1

]

1The symbol× between intervals represents Cartesian product and,
means equal by definition.

and (a0, a1, b0, b1) ∈ Hd.
Observe also that∀(L, C, R) ∈ Hc, it follows that

a1 ∈ Ωa1
= {a1 ∈ IR : a1 ≤ a1 ≤ a1}

a0 ∈ Ωa0
= {a0 ∈ IR : a0 ≤ a0 ≤ a0}

b1 ∈ Ωb1 = {b1 ∈ IR : b1 ≤ b1 ≤ b1}
b0 ∈ Ωb0 = {b0 ∈ IR : b0 ≤ b0 ≤ b0}

which allows to include system (5)-(6) in the polytopic
system [4]

x(k + 1) = A(α)x(k) + Bu(k) (7)

y(k) = C(α)x(k) (8)

where

A(α) =

16
∑

j=1

αjAj , C(α) =

16
∑

j=1

αjCj

and Aj and Cj , j = 1, . . . , 16 are the vertices of the
polytopes of matricesA(α) and C(α). The vector of
uncertain parameters,α, belongs to the unit simplex

U = {α ∈ IR16 :
16
∑

j=1

αj = 1 , αj ≥ 0 , j = 1, . . . , 16}

(9)
Remark 1:Any property valid for the polytopic system

(7)-(8) is also valid for system (5)-(6), since (5)-(6) is
included in (7)-(8).

III. PROBLEM FORMULATION

The main objective of this paper is to solve problems 1
and 2, described in the sequel.

Problem 1: Consider the output feedback control law

u(k) = k0y(k) (10)

which allows to write the control system (7)-(8) as

x(k + 1) = Acl(α, k0)x(k) (11)

where

Acl(α, k0) =

16
∑

j=1

αjAclj(k0) , α ∈ U ,

Aclj(k0) = Aj + k0BCj , j = 1, . . . , 16

Find k0 ∈ K0, where

K0 , {k0, k0 + δ, . . . , k0 − δ, k0} (12)

for which there exists a quadratic Lyapunov function

v(x(k)) = x(k)′Px(k) (13)

ensuring the solution for the optimization problem2

r∗P1 , mink0∈K0
r s.t.

0 < r ≤ 1
max |λ(Acl(α, k0))| < r , ∀α ∈ U

(14)

2
λ(.) represents the operator which extracts the eigenvalues of a

square matrix.
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Remark 2:Notice from Problem 1 that one must find
k0 in a finite set, defined byk0, k0 and δ. These values
can be based, for instance, on the limits of precision of
the digital platform used to implement the controller.

Remark 3:The optimization problem described in
Problem 1 can be read as findk0 ∈ K0 which minimizes
the upper bound for the maximum absolute value of
the closed-loop poles, based on quadratic stability. The
solution for this problem provides a controller which
ensures the minimum upper bound for the settling time of
the state trajectories in the transient response of the closed-
loop system based on the quadratic Lyapunov function
(13). Moreover, it is clear that the solution of (14) ensures
that max |λ(Acl(α, k0))| < 1, ∀α ∈ U , thus guaranteeing
the global asymptotic stability of the closed-loop system,
that is, for any initial conditionx(0), x(∞) = 0.

Remark 4:From Remark 3, one has that the solution
for (14) guarantees the location of the poles of the closed-
loop system inside a circle included in the unit circle for
the entire set of uncertain parameters, that is, the solution
for (14) provides robust pole location with respect to the
uncertain parametersα ∈ U .

Problem 2: Consider the output feedback control law
with unitary delay

u(k) = k1y(k − 1) (15)

which allows to write the control system (7)-(8) as

x̃(k + 1) = Ãcl(α, k1)x̃(k) (16)

wherex̃(k) = [x0(k) x1(k) x2(k)]′ and

Ãcl(α, k1) =

16
∑

j=1

αjÃclj(k1) , α ∈ U ,

Ãclj(k1) = Ãj + k1B̃C̃j , j = 1, . . . , 16

with

Ãj =

[

0 L
M Aj

]

, L =
[

1 0
]

,

M =

[

0
0

]

, B̃ =

[

0
B

]

, C̃j =
[

0 Cj

]

Find k1 ∈ K1, where

K1 , {k1, k1 + δ, . . . , k1 − δ, k1} (17)

for which there exists a quadratic Lyapunov function

v(x̃(k)) = x̃(k)′P̃ x̃(k) (18)

ensuring the solution for the optimization problem:

r∗P2 , mink1∈K1
r s.t.

0 < r ≤ 1

max |λ(Ãcl(α, k1))| < r , ∀α ∈ U
(19)

Remarks similar to remarks 2 to 4 are applicable to
Problem 2.

Remark 5:Observe that due to the unitary delay on the
feedback, which can arise for instance from measurement
and processing delay, the closed-loop system (16) requires
one more state variable to be described when compared to
the closed-loop system for the system without delay (11).

IV. MAIN RESULTS

Solutions for problems 1 and 2 are given in this section,
based on the solution of convex optimization problems
called generalized eigenvalue problems [4]. This class
of optimization problems has the great advantage of
being solvable by globally convergent algorithms, as for
instance [6], which provide the global optimal solution in
polynomial time.

Theorem 1:Givenk0 ∈ K0. If, and only if, there exists
a solution for the following convex optimization problem:

r∗(k0) , minP=P ′∈IR2×2 r
s.t.

0 < r ≤ 1
[

rP Aclj(k0)
′P

PAclj(k0) rP

]

> 0 , j = 1, . . . , 16

(20)
then (13) is a quadratic Lyapunov function ensuring that
max |λ(Acl(α, k0))| < r∗(k0), for all α ∈ U .

Proof: For a givenk0 ∈ K0 and for a given0 < r ≤
1, one has that the existence ofP = P ′ > 0 solving the
linear matrix inequality

Acl(α, k0)
′

r
P

Acl(α, k0)

r
− P < 0 , ∀α ∈ U (21)

is necessary and sufficient formax |λ(Acl(α, k0))| < r,
for all α ∈ U , under quadratic stability [9]. By applying
Schur complement and by taking into account the con-
vexity of U , one has that the matrix inequality in (20)
is necessary and sufficient to ensure (21). The global
minimum value of r solving the matrix inequality in
(20), defined asr∗(k0), can be obtained by means of the
solution of the generalized eigenvalue problem (20) [4].

Corollary 1: From all k0 ∈ K0 which fulfill (20), the
solution of Problem 1 is given byk0 which provide the
minimum value ofr∗(k0), calledr∗P1.

Theorem 2:Givenk1 ∈ K1. If, and only if, there exists
a solution for the following convex optimization problem:

r∗(k1) , minP̃=P̃ ′∈IR3×3 r
s.t.

0 < r ≤ 1
[

rP̃ Ãclj(k1)
′P̃

P̃ Ãclj(k1) rP̃

]

> 0 , j = 1, . . . , 16

(22)
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then (18) is a quadratic Lyapunov function ensuring that
max |λ(Ãcl(α, k1))| < r∗(k1), for all α ∈ U .

Proof: Follows the ideas in the proof of Theorem 1.

Corollary 2: From all k1 ∈ K1 which fulfill (22), the
solution of Problem 2 is given byk1 which provide the
minimum value ofr∗(k1), calledr∗P2.

V. NUMERICAL RESULTS

The next examples present a comparison between both
control laws in the solution of problems 1 and 2. In
the first example, onlyR is considered as an uncertain
parameter in the plant, lying on a wide interval. In the
second example,L, C and R are supposed as uncertain
parameters with10% of perturbation around their nom-
inal values. For both examples, the sampling period is
T = 1/1800 s and the setsK0 and K1 are given by
{−1,−1 + 0.01, . . . , 1}.

Example 1:Consider that the parameters of the plant
are given by:24Ω ≤ R ≤ 1MΩ, L = 3 mH and
C = 120µF . The solution for Problem 1, provided by
Corollary 1, is r∗P1 = 0.99, being this optimal value
guaranteed by any of the values ofk0 in the set{0.4, 0.4+
0.01, . . . , 0.67}. The solution for Problem 2, provided by
Corollary 2, is r∗P2 = 0.77, for the values ofk1 in the
set{0.52, 0.53}. Notice the considerable improvement on
the minimization of the upper bound of the maximum
absolute value of the closed-loop poles based on quadratic
stability provided by the control law (15) (with delay)
when compared to the control law (10) (without delay)
for this example.

Example 2:Define Rn = 24Ω, Ln = 3 mH and
Cn = 120µF and consider0.9Rn ≤ R ≤ 1.1Rn,
0.9Ln ≤ L ≤ 1.1Ln and 0.9Cn ≤ C ≤ 1.1Cn.
Corollary 1 does not provide any solution for Problem 1
in this case. On the other hand, Corollary 2 yieldsr∗P2 =
0.83 as a solution for Problem 2 for any value ofk1

belonging to the set{0.44, 0.45, 0.46}, thus illustrating
again the superiority of control law (15) (with delay) to
solve the problem of minimization of the upper bound
of the maximum absolute value of the closed-loop poles
under quadratic stability.

VI. CONCLUSION

This paper investigates the stabilization of a plant
given by a second order electrical circuit with uncertain
parameters by means of two digital output feedback
control laws:u(k) = k0y(k) (without delay) andu(k) =
k1y(k − 1) (with delay). For each control law, a convex
optimization problem is proposed, allowing to find the
value of the control gain inside previously given finite
sets which provides the global minimum upper bound
for the maximum absolute value of the closed-loop poles

under quadratic stability for the uncertain system (robust
pole location). Numerical comparisons illustrate that the
control law subject to delay provides better robust pole
location under quadratic stability. The proposed conditions
can also be used to solve the output feedback design
problems given here when the system is not affected by
uncertainties, by simply employing fixed matricesAcl(k0)
and Ãcl(k1) in the related theorems, instead of sets of
matrices. The proposed synthesis conditions can also be
applied as a robust stabilization stage in problems of
regulation and tracking. Finally, although the results have
been derived for a specific electrical circuit and for unitary
delay, the methodology can be extended to other circuits
with uncertain parameters as well as to cope with multiple
delays affecting the output feedback.

REFERENCES

[1] J. Ackermann.Robust Control: Systems with Uncertain Parame-
ters. Springer Verlag, London, England, 1993.
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