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Abstract This paper discusses the main
characteristics and presents a comparative analysis of three
synchronization algorithms based, respectively, on a Phase-
Locked Loop, a Kalman Filter and a Discrete Fourier
Transform. Details on how to modify the filtering properties
or dynamic response of each algorithm will be discussed in
terms of their design parameters. In order to compare the
different algorithms, these parameters will be set for
maximum filter capability. Then, the dynamic response,
during input amplitude and frequency deviations will be
observed, as well as during the initialization procedure. So,
advantages and disadvantages of all considered algorithms
will be discussed.

L INTRODUCTION

The identification of fundamental amplitude, frequency and
phase angle of the power grid voltages has been an important
goal related to controlling and synchronizing power electronic
devices. In this sense, several algorithms have been proposed
and discussed.

The PLL — Phase Locked Loop — has been one of the most
applied algorithms to get synchronization signals [1-5]. Recent
researches have been shown that RDFT — Recursive Discrete
Fourier Transform — can also be applied. Using the information
of the RDFT, it is possible to synthesize a unitary
synchronizing signal, independently of the input conditions [6-
8]. Other possibility is the KF — Kalman Filter, barely, but also
applied in some power system applications [9-12]. Each
algorithm has its own dynamic and filtering characteristic [13].

The next sections will present the particular details on
designing each model, as well as their advantages and
disadvantages. In order to perform a comparative analysis, the
parameters of all algorithms will be set to achieve maximum
filtering characteristics respective to waveform distortions.
Afterward, their performance and dynamic response will be
analyzed during initialization and voltage or frequency
transitory conditions.

1L PLL - PHASE LOCKED LOOP

The analyzed model has been proposed in [1] and is shown in
Fig. 1. The voltage signal, v, is directly sampled from the power
grid and an orthogonal signal u, is generated by the PLL
algorithm when the synchronization is achieved. The average of
the inner product (dp) is calculated and compared to a nil
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reference signal (orthogonality condition). The difference of
these two signals is an error signal that is applied to a PI
controller. The output of the PI is the fundamental frequency @
of v. This frequency is integrated in order to get the phase
function 6 = ar of the digitally synthesized orthogonal signal. If
a discrete system is used, it is necessary to consider the delay
block, where 7T, is the sampling period. If the nominal
frequency is previously known, it can provide a feed forward
signal @y=27f; in order to improve the initialization dynamic
response.

The average of the dot product (dp) can be calculated by
means of a moving average filter, which should be tailored as a
function of the estimated fundamental frequency (@). This can
be done adjusting either the sampling frequency or the window
size according to frequency variations (@). As discussed in [5],
it can be shown that the nonlinear filter transfer function can be
simplified by means of Taylor Series, resulting to a linear,
constant and unitary gain.

Delay
Functior +7
1 [
1+s-T, /

Fig. 1. PLL using inner product of orthogonal functions.

The frequency and the phase angle generated by the PLL are
used to synthesize the signal u (1), which is proportional (in-
phase) to the fundamental signal of the power grid. If the input
voltage is distorted, the PLL algorithm will calculate the
fundamental frequency (@) and phase (6) of the measured
voltage.

u =sin(d+90°) . (1)

Since (1) results in a unitary signal, an additional algorithm is
needed to «calculate the amplitude of the fundamental
component. Such algorithm must be sufficiently robust to deal
with distorted input voltages. An interesting proposal has been
presented in [16] and it is summarized in the Appendix.

Although the normalization of the measured signal is very
important to the PLL performance, the gains of the PI controller
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are directly related to the dynamic response and effectiveness of
the system. Then, the calculations of the PI parameters must be
realized very carefully, according to the conditions that the PLL
algorithm will be used [1,13]. In this paper, the calculation of
such gains is based on the closed-loop transfer function of the
linearized model shown in Fig. 2:

K,s+K
He, (5)=— 2 1 . 2
sTg+s5"+Kps+ K,
A0k, +sk,)| @ |1 1 4
s s 1+ 5T,

Fig. 2. Simplified model of single-phase PLL.

Null steady-state error for a ramp reference signal is a natural
characteristic of a system with structure like the one in (2). But
it was not possible to obtain a set of parameters in order to
achieve both good filtering and fast response. Thus, the design
of the PI should be done considering the most important
characteristics, regarding to the final PLL application.

Considering equation (2), while the sampling frequency was
sufficiently high, the pole of the transfer function related to it is
very distant from the origin and from the other two poles. So
such pole can be neglected, yielding a simplified transfer
function:

2os+o,  Kys+K,
s’ +2ws+@ s +K,s+K,

The gains can be calculated by the second order canonical
form:

H (s)= 3)

KP=2§(0”,KI:(()3, (4)
where @, [rad/s] is the desired closed-loop frequency of the
system and £is the damping factor, usually between 0.5 and 1.

II1. RDFT - RECURSIVE DISCRETE FOURIER TRANSFORM

Considering that the RDFT can be calculated in a recursive
form [6-8], the model discussed in this paper has been proposed
in [13]. A signal v is sampled at a sampling frequency
f,=UT;=N/T,, where T, is the size of a sliding sampling
window and N is the number of samples in the period T,.
Assuming a sequence of samples k-N<n<k-1, k=1, the
discrete Fourier transform of this sequence, where v[n] =0 if
n<0,is:

V.00 =V, (k= D) + (K]~ ik —N])exg{—jz”('zv‘l)’”j .(5)

with V,,(0) = 0.

If the nominal fundamental frequency of the power grid is
f1 =60 [Hz], T, is chosen 1/60 [s]. When T; is equal to T,, and
m = 1, the real part of the inverse transform of (5) results in a
filtered signal with the correct amplitude, frequency and phase
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of the fundamental component. However, in real applications,
T, can be diferent from T, So, the output signal of RDFT
results the correct frequency, but the phase and amplitude will
be different from the input signal. The RDFT behaves like a
band-pass filter tuned on frequency 1/7,,.

Since it is not possible to change the sampling period in
several applications, it will be applied a method of synthesis of
an unitary signal u(k-N), in phase with the measured voltage,
which will be useful for adapting the algorithm when T, # T,,.

utk —N)= cos((o(k) + (2”(;_1) + AQD, (6)

where:
o Im{V, (k)}
k)= tan™| — 10 | @
o= tan [Re{%(k)})
and:
20 = % [@(JN+1)—@((J —DN +1)]- ®)

where @(JN+1) is the argument (7) of the transform in the
beginning of J" interval of T,, with /=1, 2, 3... Fig. 3 shows
the complet process. In this case, the RDFT will also need an
additional amplitude detector, as the one discussed in the
Appendix.

[=sin@2n(k—1/N)

+ = Im{V,(k)}
>y

;

2

+ PR
utk—N)~fcos@(k—N)I2E=N 5 A0 .

+

Im{V, (k)}
Re{V,(k)}

——Re{V(b)}

tan "' ()

Fig. 3. Blocks diagram of RDFT.

Two methods can be used to fundamental frequency
identification. The first one uses the zero-crossing detection of
u(k-N), which is purely sinusoidal. In order to improve the
frequency estimation accuracy, an average of the last six values
is realized at the end of each cycle of u(k-N). The second
method results from:

f=[PUN D=9 DN+ +27 ), )
b 24T,
Both methods are relatively accurate. However, fast

transients in the fundamental frequency can be not detected.
Nevertheless, since the frequency variations of the power grid
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are usually slow, the smooth response of the algorithm is not a
disadvantage. Further, the synthesis of u(k-N) does not depend
on the frequency detection and the dynamic response of any
control or synchronizing system based on the RDFT will not be
affected.

IV. KF — KALMAN FILTER

As discussed in [14,15], consider a system model via state-
variables

{xk =Ax,_, +w, ’ (10)

Vi = Bx, +z;

where:

e  kis the calculus step,

® xpisanx 1 state vector of the system in the step k,

e yrisamx 1 vector of the measurement in the step &,

® A is a square matrix n X n, which should be ajusted in case of

frequency deviations of the input signals,

B is a constant m X n matrix,

wr is a n x 1 vector representing process noise (due to

perturbations and inaccuracy of the dynamic model),

e 7z is am x 1 vector representing measurement noise (due to the
inaccuracy of transducers and signal conditioning circuits) on the
signals to be digitalized.

Defining:
® () —process noise covariance,
R — measurement noise covariance,

° _ A _ o e, e . .

X, — X, ., — initial estimation error,
® P, —estimation covariance error,
L X, — x  — [inal estimation error,

e P, —final estimation error covariance and
K; — Kalman gain,

the state estimation X, based on measurements y;, is achieved
in two parts: a prediction step and a correction step, as shown in
Fig. 4. The first step estimates the state ahead and gets the error
covariance ahead. The second one computes the Kalman gain,
update the estimation with measurement and update the error

covariance.
,m

\ Prediction | ]

Correctior \

3- Compute the Kalman gair

K. =P, 'BT(B'Bc/k—l ‘B"+R)"
4- Update estimate with measurement
X =X+ K, (3 —B- %)

‘- Project the state ahead
X =A%,

2- Project the error
covariance ahead

Py =A-F vy +0

5. Update the error covariance
P.=U-K;-B) P,

-

Fig. 4. KF description.

According to [9-12], a good model for the real fundamental
wave of a single-phase power system can be represented by
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means of discrete state-variable model:
Vl(k) = AVl(k-l) + Wi
{ v(k) = BVy(k) + 2 . an
where Vy(k) = {Vl(k)
v (k)
phase (vi(k)) and orthogonal (v,(k)) to the measured signal
v(k), B=[1 0], wihasa dimension2x 1 andz, 1 x 1, and

A= {cos(Zﬂ'/N) - sin(2ﬁ/N)]

} is a vector containing filtered signals in

sin2z/N) cos(2x/N)

Differently from other proposals, as [12], e.g., in this paper
the harmonic components are not included in a deterministic
way (that is in the very matrix A). They will be considered
perturbations and in this sense, will be modeled by the
measurement and process noises. Considering the harmonics in
matrix A, even if limiting the maximum order, would be a very
complex task.

Thus, the filtered signals in Vj(k) presents the same
amplitude of the fundamental component of v(k), what means
that the magnitude of the fundamental component is calculated

by:
Mg,l(vl)2+(vu)2 . (12)
The instantaneous phase angle can be obtained from:
49(k):tan[— n (k) } (13)
v, (k)

and the fundamental frequency f; can be estimated from zero-
crossing detection of the signal &k) and improved with an
average of the last four estimations.

Matrix A is responsible for the performance of the KF when
there is a frequency variation in the input signal. As N =f/f},
changing f; leads to changing the elements of matrix A, if f; is
kept constant. In order to make the KF immune to these
disturbs, the identification of f; is essential.

The filtering characteristics and the convergence speed of the
filter are defined by the measurement noise and process noise.
When the measurement noise is high, the trace of R and the
elements of K will be small. So, the relative weigh of y; should
be reduced in the next calculus of the estimation, what makes
the convergence slow. On the other hand, when the
measurement noise is small, the trace of R and the elements of
K; will be high, ensuring a better confidence in yy and a fast
dynamic response.

When the process noise is high, the trace of Q and Pyy.; and
the elements of K are high, resulting in a large reliability for
the measurements of y, in the next estimation step. If the
process noise is small, the trace of Q and Py, ; and the K
elements are small, resulting in a small weight for y; and a slow
convergence of the algorithm.

Therefore, the KF design depends on conciliation between
desired accuracy and dynamic response, what can be achieved
by a proper choice of matrices  and R, taking into account
input waveform distortions and desired characteristics of final
applications [13].
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V. SIMULATION RESULTS

In order to compare the discussed algorithms, some
simulations has been realized. The sampling frequency was set
to fy=12kHz. The input signal was defined with unitary
amplitude, f; = 60 Hz, phase angle ©/6 and it is distorted with
10% of 3", 5™ and 7" harmonics. The parameters of PLL and
KF were set to get the maximum filtering capability. The
parameters @), = 22,63 rad/s and &£ = 0,707 were chosen for the
PLL and considering the KF filter,

0= {10'(’ 0 } and R = [0.64]. (18)

0 10°

The THD - total harmonic distortion — of the resulting filtered
signals were 0% for the PLL and RDFT and 0.18% for the KF.
Fig. 5 shows the estimated fundamental frequency and the
errors between the input and output signals for the three
algorithms, during initialization. Considering the RDFT, the
frequency has been calculated using both methods: zero-
crossing detection (right) and by (9) (left). The error signal
convergence time has been respectively, 0.3s, 1.3 s and 2
cycles for PLL, KF and RDFT.

(v-v1) (p.u.)

(v -Iu) (p.u.)

0.05 0.1

. 0.15
Time (s)

0.2

Fig. 5. PLL, KF and RDFT: initialization.
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Fig. 6, 7 and 8 show the performance of the methods during a
sag about 50% on the input voltage in #=2.5 [s]. The upper
graphics show the input and output voltages of the algorithms
and the lower part shows the calculated frequency. The output
signal converges almost instantaneously in PLL and RDFT and
needs 0.5 s to converge in the KF. The frequency does not
change in KF. In case of PLL and RFDT, a small perturbation is
observed but it is eliminated very rapidly.

Fig. 9, 10 and 11 show the algorithms performance when the
fundamental frequency changes to 59 Hz (#=2.5[s]). The
output voltage of RDFT converges almost instantaneously and
the PLL and FK output needs 0.3 s and 1 s, respectively. It can
be noticed that the resulting frequency signal is somewhat
oscillatory for the three algorithms. This could be avoided if the
sampling frequency were conveniently altered during the
processes. Table 1 summarizes the convergence time and the
frequency variation range for all of the algorithms.

PLL - v: Dotted, u: Solid

3 3.2 3.4 3.6
Time (s)
Fig. 6. PLL, voltage sag.
KF - v: Dotted, v1: Solid
1 ,,,,,,,, —_— T T e e e T — —
0.5 WL L . _
JAHTAMAN i i il
[tk i |
0.5 ”“ SAASAARRARARL 24 8
ba 25 26 27 28 29 3 a1
60.1
~N
L 60
59'8.4 2.‘5 216 217 218 219 é 3.1
Time (s)

Fig. 7. KF, voltage sag.



Home

f1 (Hz)

90 Congresso Brasileiro de Eletronica de Poténcia - 9th Brazilian Power Electronics Conference

RDFT - v: Dotted, u: Solid
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Fig. 8. RDFT, voltage sag.
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Fig. 9. PLL, fundamental frequency variation.
KF - v: Dotted, v1: Solid
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Fig. 10. KF, fundamental frequency variation.
RDFT - v: Dotted, u: Solid

24 26 28 3 32 34 36

24 26 28 3 3.2 34 36
Time (s) i
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Fig. 11. RDFT, fundamental frequency variation.

Table 1 — Fundamental frequency dynamic.

Convergence
time (s) 4/ (Hz)

PLL 0,3 58,95 - 59,05

FK 1,0 58,97 - 59,04
RDFT
(Left) 0,1 58,97 - 59,02
RDFT
(Right) 0,02 58,98 - 59,07

VI. CONCLUSIONS

This paper has discussed and compared three different
algorithms capable of providing synchronism information for
grid connected applications. These methods were able to
identify the amplitude, frequency and phase angle of the grid
voltages. The filtered signals convergence and the calculated
fundamental frequency were observed by means of simulation
results.

It is important to point out the necessity of choosing among
different strategies in order to solve a specific problem, as well
as choosing among particular characteristics and desired
performance for the algorithms, even when they are
contradictory. Such choices are especially important when
dealing with the implementation of any system, on which is
expected to have good dynamic response under transitory
conditions and good accuracy under steady-state.

The PLL algorithm is interesting when a smooth frequency
dynamics is required, since f; is calculated every sampling step.
Moreover, the PLL requires a normalized input signal and an
amplitude detector for fundamental identification.

The RDFT results have shown a shorter convergence time
and a good filtering capability. However, the dynamic of the
frequency estimation is not smooth, because it is updated every
cycle. The RDFT algorithm does not require normalized input
signals, but it needs an amplitude detector if the frequency is
allowed to deviates from the nominal value.

The KF does not require normalization of the measured
voltages, or amplitude detectors. However the frequency
calculus dynamic is not smooth and, as well as with the PLL, its
performance could be smashed if the disturbs in the input signal
increases significantly.

Based on the realized studies and previous simulations, it is
possible to notice that the RDFT algorithm could be
recommended when the filtering capability and convergence
time are of major concern; PLL algorithm could be
recommended when the frequency estimation is needed every
discrete step or when the computational capability is limited
(because of its simplicity); the KF importance can be justified
since it does not require any complex additional technique to
identify the amplitude, frequency or phase angle information.
All of them are interesting alternatives to be used in
applications with synchronization requirements or fundamental
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wave identification. The choice of one or other technique
depends basically on the final application requirements.

APPENDIX — FUNDAMENTAL AMPLITUDE DETECTOR

Considering the applications on which the identification of
fundamental amplitude may be necessary, the following
methodology can be used along with the unitary sinusoids
generated, e.g., by the RDFT or PLL presented previously.

Assume that the fundamental and harmonic components of
the utility voltage can be expressed by:

N
v=Asin(ar + @)+ Y C, sin[n(ax + @)]. (A
n=2
where A is the amplitude to be identified, o is the frequency
and ¢ is the phase of the fundamental component, and Cn is the

amplitude of the nth harmonic component.
The digital sinusoid obtained from the PLL or RDFT outputs,
which should be in-phase with the fundamental component and

has unitary amplitude, can be expressed by:

u =sin(wt + @). (A.2)
Multiplying (A.1) and (A.2) yields:
V-u= Asinz(a)t+¢)+
(A.3)

N .
sin(ax + )Y C, sin[n(ax + @)]
n=2
Since all product terms containing different frequency
components have zero mean value, the resulting mean value of
(A.3) reduces to the mean of the first squared term:

A
Vou=—
2

Hence, the amplitude of the fundamental component of the
utility voltage is given directly by:

A=2-v-u. (A.5)

Fig. 12 illustrates the fundamental amplitude detector. Since the

PLL or the RDFT can be used, the proposed scheme is

immune to voltage distortions or frequency deviations and it is
not based on any sort of voltage peak detector.

, (A4)

u

A\

v ] . lT
w4

Fig. 12 — Fundamental Amplitude Detector.
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