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Abstract— This paper provides a procedure to design
repetitive controllers which can ensure the tracking of
periodic reference signals in control systems whose plantsare
affected by structured uncertainty. The control design prob-
lem is expressed as a convex optimization problem whose
objective is to maximize the bandwidth of a low-pass filter
in the repetitive controller (leading to the optimization of the
tracking performance) under matrix inequality constraint s
that guarantee the stability for the uncertain closed-loop
system. The results rely on Lyapunov-Krasovskii functionals
which ensure the stability of uncertain systems subject to
delays. Available linear matrix inequality solvers allow to
easily cope with the solution of the proposed conditions.
An example of application to power electronics is presented
to illustrate the efficiency of the proposed control design
procedure.

Keywords – Convex optimization; Delayed systems;
Lyapunov-Krasovskii functionals; Structured uncertaint y;
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I. INTRODUCTION

Repetitive control systems have been widely used to
ensure good tracking of periodic reference signals and to
reject periodic disturbances in several control applications
(see, for instance, [5, 10, 11, 14, 16, 17]). It is well known
that finding a good tradeoff between stability and tracking
performance can be a difficult task when dealing with
repetitive control design. Although many works propose
heuristic formulations to choose the parameters of repeti-
tive controllers, the determination of the control gains can
be based on systematic procedures as for instance those
from [9, 18], which do not take into account uncertainties
in the model, and those from [8, 14], which cope with
uncertain parameters.

However, it is apparent that few systematic studies of
design of repetitive controllers based on linear matrix
inequalities (LMIs – [2]) have been carried out. It is worth
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to mention the works in [4, 5]. This motivates deeper
investigation on the subject, since the control design
expressed in terms of LMIs is very attractive due to the
possibility of finding the solution to the control problem
in polynomial time by means of interior point based
algorithms [6] and also due to the fact that robustness to
uncertainties and to disturbances, specifications of bounds
for the overshoot, pole location constraints, bounds for
the control input, etc. can be easily handled in the LMI
framework.

This paper provides sufficient LMI conditions to verify
if a chosen bandwidthwc for a low-pass filter in a
repetitive controller ensures the stability of the closed-
loop system for a plant with uncertain matrices in a
polytope. It is known that, even in the case without
uncertainties, aswc increases, the tracking performance
improves. Thus, to obtain the maximum value ofwc

such that the uncertain closed-loop system remains stable
is of great interest. In order to cope with this issue, a
convex optimization problem is also proposed in the paper,
given by the maximization ofwc subject to a finite set
of matrix inequality constraints that, if satisfied, assure
the existence of a Lyapunov-Krasovskii functional that
certifies the stability of the uncertain polytopic system [7,
15]. The efficiency of the proposed conditions is illustrated
by means of an example dealing with the maximization of
wc for a repetitive controller applied to a control system
whose plant is an electrical circuit with an uncertain
resistive load, used as a stage in many power converters.

II. PROBLEM FORMULATION

Consider the control system given in Figure 1.
The Laplace transforms of the reference, the system

output, the control input and the tracking error are, re-
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Fig. 1. Closed-loop system with a repetitive controller (CRP (s)) and
an uncertain plant (G(s, α)).

spectively,R(s), Y (s), U(s) and E(s). G(s, α) is the
transfer function of a stable SISO compensated uncertain
plant with state space representation given by

ẋp(t) = Ap(α)xp(t) + Bp(α)u(t) (1)

y(t) = Cpxp(t) (2)

whereAp(α) andBp(α) belong to the polytope [2]

P = {(Ap, Bp)(α) : (Ap, Bp)(α) =
N

∑

i=1

αi(Ap, Bp)i ,

N
∑

i=1

αi = 1 , αi ≥ 0 , i = 1, . . . , N} (3)

with vertices (Ap, Bp)i, i = 1, . . . , N known a priori.
CRP (s) is the transfer function of a repetitive controller,
which includes a low-pass filterQ(s) and a time-delay
T . Without loss of generality [4], the low-pass filter is
assumed to be of first-order, given by

Q(s) =
wc

s + wc

(4)

The aim of this paper is to provide a convex optimiza-
tion solution for the following problem.

Problem 1: Determine the maximum value of the band-
width wc for the low-pass filter in the repetitive controller
such that the closed-loop system is stable for any uncertain
plant matrices(Ap, Bp)(α) belonging to the polytopeP
(robust stability problem).

It is known that even in the case of the plant without
uncertainties, if the bandwidth ofQ(s) increases, the
ability of the closed-loop system to track periodic ref-
erences also improves, but the stability margin decreases
andvice-versa. In order to rewrite Problem 1 as a convex
optimization problem, a state space model of the closed-
loop system is obtained following similar steps to those
in [4], but taking into account that here one deals with
structured uncertainty. The equations of the closed-loop
system can be written as

ξ̇(t) = A(α, wc)ξ(t) + Ad(α, wc)ξ(t − T ) (5)

where

ξ(t) =

[

xp(t)
xc(t)

]

,

A(α, wc) =

[

Ap(α) − Bp(α)Cp 0
−Cp −wc

]

,

Ad(α, wc) =

[

0 wcBp(α)
0 wc

]

Thus, Problem 1 can be regarded as a problem of
computation of the maximum value ofwc such that the
system with state delay (5) is stable for any(Ap, Bp)(α) ∈
P . This problem can be tackled using the approach based
on Lyapunov-Krasovskii functionals to assess the stability
of systems subject to delay (for details, see for instance
[7, 15]).

III. MAIN RESULTS

The next theorem provides an LMI condition to verify
if the uncertain closed-loop system with state delay (5) is
stable for a given value ofwc.

Theorem 1:Given wc > 0, if there exist symmetric
matricesP andS of appropriate dimensions such that

P > 0 (6)

Mi ,
[

Ai(wc)
′P + PAi(wc) + S PAdi(wc)
Adi(wc)

′P −S

]

< 0 ,

i = 1, . . . , N (7)

where

Ai(wc) =

[

Api − BpiCp 0
−Cp −wc

]

,

Adi(wc) =

[

0 wcBpi

0 wc

]

then the closed-loop system (5) is stable for anyT > 0,
for any (Ap, Bp)(α) ∈ P .

Proof: Notice that the feasibility of Theorem 1
ensures the existence ofP = P ′ > 0 and S = S′ > 0

such that the functional

v = ξ(t)′Pξ(t) +

∫ t

t−T

ξ(θ)′Sξ(θ)dθ (8)

is positive∀T > 0, ∀ξ(θ) 6= 0, θ ∈ [t − T, t] and that its
time-derivative along the system trajectories

v̇ = ξ̇(t)′Pξ(t)+

ξ(t)′P ξ̇(t) + ξ(t)′Sξ(t) − ξ(t − T )′Sξ(t − T )

=
[

ξ(t)′ ξ(t − T )′
]

M(α)

[

ξ(t)
ξ(t − T )

]

(9)
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with

M(α) =

N
∑

i=1

αiMi ,

N
∑

i=1

αi = 1 , αi ≥ 0 , i = 1, . . . , N

and Mi given by (7), is negative for the given value
of wc > 0, ∀[ξ(t)′ ξ(t − T )′]′ 6= 0, ∀T > 0, for any
(Ap, Bp)(α) ∈ P . Thus, (8) is a Lyapunov-Krasovskii
functional ensuring the stability of the closed-loop system
(5) for the given value ofwc, for any arbitrary time-delay
T > 0, for any (Ap, Bp)(α) ∈ P .

Corollary 1: The global maximum value ofwc such
that the closed-loop system has its stability ensured by
the conditions from Theorem 1 is obtained by means of
the following generalized eigenvalue problem:

w∗
c , maxP=P ′,S=S′ wc s.t.

wc > 0 , (6) , (7)
(10)

Proof: See [2] for generalized eigenvalue problem
(convex optimization problem).

Remark 1: It is important to emphasize that if the
conditions from Theorem 1 have a solution, then the
closed-loop system is stable for the given valuewc, for
any arbitrary value ofT > 0, for any (Ap, Bp)(α) ∈ P
since the solution of Theorem 1 (i.e. matricesP and
S) allows to construct a Lyapunov-Krasovskii functional
which ensures closed-loop stability independently of the
value of delay introduced by the repetitive controller.
Notice that a necessary condition for the feasibility of
Theorem 1 is thatApi−BpiCp, i = 1, . . . , N are Hurwitz
matrices.

Remark 2:The control design formulation given above
is applicable also for uncertain MIMO plants with transfer
matrix G(s, α) of dimensionm × m. In this case, one
has that the low-pass filters in the repetitive loops are
described by

q(s) =
wc

s + wc

Im×m

and the proposed conditions can cope with the computa-
tion of wc using matrix variables of appropriate dimen-
sion.

IV. DESIGN EXAMPLE

To illustrate the application of the proposed conditions
for a plant commonly used in power electronics, the
following example is given. The plant to be controlled is
the circuit in Figure 2. This circuit is used, for instance,

L

C R

iL(t)

vC(t)u(t)

Fig. 2. Electrical circuit used as a stage in UPS and ACPS systems.

as a final stage in uninterruptible power supply (UPS)
systems and in AC power source (ACPS) systems. Here,
the parametersL = 5 mH andC = 80 µF are borrowed
from [3] and R is supposed as an uncertain parameter
with ±50% deviation from the nominal valueR = 24 Ω

given in [3] (i.e. here12 Ω ≤ R ≤ 36 Ω).
First step: plant model.
The uncompensated plant admits a state space repre-

sentation with vertices given by

A1 =

[

0 1
−2500000 −1041.667

]

A2 =

[

0 1
−2500000 −347.222

]

and

Bp1 = Bp2 =

[

0
1

]

, Cp =
[

2500000 0
]

Second step: robust stabilization of the uncertain plant.
To ensure the fulfillment of the assumption that the

SISO compensated uncertain plant is stable, the quadratic
stabilizability [1, 2, 12, 13] is used here to obtain the state
feedback gains

K =
[

−0.701569 −0.000082
]

which guarantee the stability of the plant for the entire
domain of uncertain parameters, leading to the dynamic
matrix verticesAp1 = A1+Bp1K andAp2 = A2+Bp2K.

Third step: computation ofwc.
The convex optimization problem in Corollary 1 is used

to compute the maximum value ofwc such that the un-
certain closed-loop system with compensated plant has its
stability ensured by the Lyapunov-Krasovskii functional
(8), yieldingw∗

c = 679 rad/s.
Fourth step: dynamic simulation of the uncertain

closed-loop system.
The dynamic simulation of the closed-loop system

for five values ofR equally distributed in the interval
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12 Ω ≤ R ≤ 36 Ω and with the reference signal
given by r(t) = 100 sin(2πt) is shown in Figure 3.
A good tracking performance can be observed for these
five different load conditions (the five curves fory(t) in
Figure 3 are practically superposed). Other simulations
using smaller grid steps in the interval12 Ω ≤ R ≤ 36 Ω

corroborate the good tracking capacity of the closed-loop
system, illustrating the efficiency of the proposed design
procedure.
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Fig. 3. Responses of the closed-loop system with repetitivecontroller
designed by means of Corollary 1. Top: controlled outputy(t) (contin-
uous line) and referencer(t) (dashed line). Bottom: tracking errore(t).

V. CONCLUSION

The main contribution of this paper is to provide a
convex optimization problem to compute the maximum
value of the bandwidth of a low-pass filter in a repeti-
tive controller applied to a control system with a plant
affected by structured uncertainties. The constraints in
the optimization problem rely on the existence of a
Lyapunov-Krasovskii functional ensuring the closed-loop
stability for the entire domain of uncertain parameters.
The solution for the proposed control design problem
is easily obtained by means of available LMI solvers,
without iterative procedures and heuristic methods. An
example of application in power electronics illustrates the
synthesis procedure.
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