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Abstract— This paper provides a control design tool suit- difficult task to be handled using classical control tech-
able to compute the state feedback control matrix gain for niques, which usually involve iterative procedures withou

multiple-input multiple-output systems of arbitrary dime n- .
sion ensuring: i) the stability by means of the location of dl any guaranteed of convergence to the optimal controller.

the closed-loop poles in a specific region in the complex plan This paper provides a systematic solution for the above
and ii) the optimization of the disturbance rejection for the  gntrol design problem for multiple-input multiple-outpu

closed-loop system. The region for pole location is defined . . .
by the control designer by the choice of three parameters (MIMO) systems of arbitrary dimension. The control

that provide bounds for the natural frequency, settling time ~ problem is written as a convex optimization problem
and dumping factor of all the transient responses of the with linear matrix inequality (LMl — [4]) constraints, as
closed-loop system. The control design tool given here is in [6], and is equivalent to the problem of determining
written as a convex optimization problem, which brings the X h . . S
great advantage of providing the global optimal controller the state feedback control matrix gain which minimizes
within a finite and previously estimated computational time ~ the H, norm of the closed-loop system (i.e. optimizes
thus avoiding iterative design procedures which do not the rejection of energy bounded disturbances) under a

have any guarantee of convergence to the global optimal \.eqcrihed pole location specification. The pole location
solution in a finite time. The investigation of tradeoffs

between the pole location and the rejection of disturbances SPecification is chosea priori by the control designer,
and also the problem of non-fragility of the controller are allowing to impose the desired bounds for natural fre-
addressed. An application of the design tool to synthesize a quency, settling time and dumping factor for all the closed-
proportional-integral controller to the regulation of vel ocity loop transient responses. The formulation of the desian
of an induction motor illustrates the efficiency of the resuts P P ST . g
given in the paper. problem as a convex optimization problem with LMI
constraints provides guarantee of finding, in a previously
estimated computational time, a controller which ensures
the global optimal rejection of disturbances respectirgy th

I. INTRODUCTION pole location specifications, which is a great advantage

The computation of a state feedback controller whicl){"h_en cpmpqred_ to .methods which search the controller
assigns all the poles of a liner time-invariant system dfsing discretization in the space of the controller and also
desired places in the complex plane is undoubtedly aff"€n compared to methods based on the use of more
important control design problem, since it allows to Shapgdvanced heuristics, as for |_nstance g_enet|c algorithmns, t
the closed-loop transient response by determining parar?ﬁearCh the con_trol_ matrix gain, but Wh'Ch do not have any
eters as overshoot, natural frequency and settling time [ngrgntee of fmd-mg th? global optimizing controller. In
2,5,12]. Although it is known that when the system i< finite computational time and also are very sensitive

controllable, one can assign the closed-loop poles at thQ initialization. The result is extended to cope with

desired places using standard pole placement techniquglse, investigation of tradeoffs between the pole location

the determination of the state feedback controller Whicﬁpecifications and the level of rejection of disturbances

ensures the desired pole location and, simultaneousg‘d also to copg W'_th the problem of no_n—fragﬂe control
provides the optimal rejection of disturbances can be 9] Asan a_lppllcanonto power electronics, the proposed
design conditions are employed to compute the gains of

tCorresponding author a proportional-integral (PI) controller used for velocity

Keywords — Optimal control; Convex optimization; Heo
control; Pole location; Non-fragile control; Pl regulator.
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regulation of an induction motor, illustrating the efficagn
of the control design tool given in the paper.

II. PROBLEM FORMULATION

Consider the linear time-invariant MIMO system given

by

i = Az + Byw + Byu (1)

(@)

wherez € IR" is the state vectoky € R? is the vector of
disturbance inputg; € IR™ is the vector of control inputs
andy € IR? is the vector of controlled outputs. Matrices
A, By, B, C, D, and D,, are real valued matrices of
appropriate dimension.

For the state feedback control law

y=Cx+ Dyw—+ Dyu

u=Kz, K R™" (3)

where the control matrix gair is to be determined,

o ii) the Ho norm [4] of the closed-loop system,
defined as

up Ll
e

,Ywe Ly, w#0, z(0)=0 (6)
is minimized.
Remark 1:Itis important to observe that the location of

all the closed-loop poles in the regidiir, «, 6) (property

i) in Problem 1) ensures that the transient responses of the
closed-loop system will always respect prescribed bounds
for natural frequencyw,,, settling timer, and dumping
factor . Specifically, these bounds can be given by

wy, <71 cosf <E<1 )

) 3

5
TSS_
(0%

Remark 2:It is also important to notice that the min-
imization of the’H., norm (property ii) in Problem 1)
provides the best rejection of disturbanees= Lo (i.e.

system (1)-(2) can be rewritten in the closed-loop forngénergy bounded disturbances) for the closed-loop system.

as

i =Aqyr+ Byw , Ay &2 A+ B, K (4)

Y= Cclm + Dyw ) Ccl £ C+ DK (5)

The main objective of this paper is to provide a contro
design tool to solve the following problem.
Problem 1: Determine the control matrix gai&” for

Remark 3:Problem 1 focuses on the determination of

the state feedback control matrix gaid that ensures,

simultaneously, properties i) and ii). It is known that ieth
pair (4, B,,) is controllable, one can easily handle the as-
signment of the closed-loop poles in the reg®r, a, )

by means of pole placement techniques. However, the

the state feedback control law (3) such that the following€t€rmination of” which ensures the pole location con-

properties are ensured:

« i) all the eigenvalues of the closed-loop matrix
A, (i.e. closed-loop poles) belong to the regio
S(r, ., 0), shown in Figure 1, where > 0, 0 <
a < rand0 < # < w/2 are chosen by the control

designer.
Imag
S(”‘: @, 6) AN
0
’ Real
| .
! =
1 r
Fig. 1. RegionS(r, «, 0), located at the open left-hand side of the

complex plane, and defined by the intersection of a circlaeced at
the origin with radiusr > 0, the strip at left of—«, 0 < o < r and
the sector with angl® < 6 < «/2;
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straints (property i) in Problem 1) and, simultaneously,
optimizes globally the rejection of disturbances for the

rlclosed-loop system (property ii) in Problem 1) is a more

involving problem.

I1l. DESIGN CONDITIONS
The next theorem, based on the results from [6], pro-

vides a solution for Problem 1 by means of a convex
optimization problem with LMI constraints (see [4, 8] for
details on this class of optimization problems).

Theorem 1:Givenr > 0,0 < a < rand0 < 6 < 7/2,

which define the regio& (r, «, 0). If there exist matrices
W=W eR"" andZ € R™*" and a scalai € IR
solving the following convex optimization problem

* A :
W= Ve}glﬂp S.t.
AW + WA + B,Z + Z'B/, +2aW <0  (8)
—rW AW + B, Z
[ WA +Z'B, W } <0 0O
sin@(T11) cosO(Th2)
{ cosO(Tr2)  sinf(Ti1) <0 (10)

Ty 2 AW + WA + B,Z + Z'B,
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Tis 2 AW + B, Z - WA - 7Z'B, The following corollaries extend the results from The-
orem 1 to deal with the investigation of tradeoffs between
T B, WC'+Z'D, pole location and rejection of disturbance, to handle de-
B, = Dy, <0 (11) centralized control synthesis and to cope with non-fragile
CW + DuZ Dy —pl control.

Corollary 1: Givenr > 0 and0 < « < r. The solution
of Theorem 1 for values of in the interval0 < 6 <
K=zw™! (12) =/2 allows to investigate the tradeoff betwegnwhich
measures the system capacity of rejection of disturbances,
ensures: i) that all the closed-loop poles belong to thgnd ¢, which provides a lower bound for the dumping
regionS(r, o, #) and ii) that the# .. norm of the closed- factor (7).
loop system, given by = /p*, is minimized. Remark 6: Tradeoffs betweery anda and betweeny
Proof: If Theorem 1 has a solution, then, usingand  can be investigated following the ideas in Corol-
the variable transformatio = KW, given in [3], Jary 1. In general, the more stringent the pole location
one recovers from (8)-(11) the LMIs given in [6], which specification, the poorer the rejection of disturbances.
ensure the location of the closed-loop poles in the region Corollary 2: The solution of Theorem 1 for block-
S(r,a,0) (LMIs (8)-(10)) and, simultaneously, imposesdiagonal matrix variables¥ and Z vyields a block-
the minimization of theH., norm of the closed-loop diagonal control matrix gain, which can be suitable to

system (LMI (11)). B deal with decentralized control or static output feedback
Remark 4:The solution of Problem 1 by means of a(see, for instance, [11]).

convex optimization problem, as in Theorem 1, is very at- Corollary 3: Givenr > 0,0 < a <7, 0 < 0 < 7/2
tractive from the computational point of view, since avail-and() < § < 1. If there exists a solution for Theorem 1
able algorithms as the LMI Control Toolbox from Matlabwith matrix Z replaced byZ(1 + 6) in each LMI then

[8] provide the global optimal solution to the problemany state feedback control matrix gaia e K, wheré
in polynomial time. Specifically, the convex optimization
problem in Theorem 1 can be read as minimjizever K={KeR™" :
the variablegV, Z and u subject to the LMI constraints K = (01(1—06) +0o(148)ZW,
(8)-(11). The number of scalar variables to be determined
isV =1+n(n+1)/2+ mn and the number of LMI
rows isR = 6n+ p+q. Interior point based LMI solvers ensures that the closed-loop poles belong to the region
as [8] have guarantee of global convergence to the glob8{r, o, #) and thaty = \/u* is an upper bound on tH.
optimal solution in a computational time proportional tonorm of the closed-loop system, called’Hn, guaranteed
V3R. This represents a great advantage against solutiopsst for the closed-loop system.
for Problem 1 based on exhaustive gridding proceduresto  Proof: To prove Corollary 3, notice that replacing
search the control matrix gai’ in an unbounded space 7 by Z(1 + §) in the LMIs of Theorem 1 one has,
(IR™*™). Approaches based on more complex heuristicgom convexity [4], that the state feedback control matrix
to searchi, as for instance as genetic algorithms, usuallgain given by any convex combination of — §)ZW 1
lead to suboptimal solutions, with no guarantee of globaind (1 + §)ZW~! ensures that the closed-loop poles
convergence in finite time and also can be very sensitivgre assigned if(r, o, §) and thaty = /i~ is an He,
to initialization. The conditions in Theorem 1 overcomeguaranteed cost for the closed-loop system. [ ]
all these difficulties, being a very efficient solution for Remark 7:Corollary 3 provides a solution for the
Problem 1. problem of robustness to a perturbatidron the control

Remark 5:Notice that Theorem 1 provides a controlmatrix gain § = 0 means no perturbation), which is a
design tool for MIMO systems of arbitrary dimension.problem of non-fragile control [7, 9]. Such perturbation on
The control designer choose the parametgrsand? for  the control matrix gain can occur in practice, for instance,
pole location inS(r, a, #) and also provides the matricesdue to the implementation of the controller on a platform
A, By, By, C, D,, and D,, of the system model. Then, with limited precision and also due to slow variation of
if Theorem 1 has a solution, given by matricds, Z the gains of the controller which may happen during
and by the scalap*, one has thatk = ZW ! is the
control gain ensuring the prescribed pole location with the *The symbol means that each LMI in Theorem 1 is placed by two

. . L . . LMis in Corollary 3: one LMI with Z replaced byZ(1+¢) and another

global optimal disturbance rejection (i.e. minimuM [ with Z repiaced byz(1 — 6).
norm given byy = /u*). 2The setlR.+ represents all nonnegative reals.

then the state feedback control matrix gain

oi€Ry ,1=1,2, 0'1+0'2:1} (13)
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operation. Corollary 3 allows to the control designer tavhere
use the information on the value of the perturbatoim Je 0 1 0
the control synthesis. Notice that any of the control matrix € = e } , A= [ } ; = { } )

gains in the sek’ ensures the prescribed pole location with 0~ bo

a guaranteed rejection of disturbance. B., = [ 7% } , B, = [ 0 } ,C=[0 —-1],
Remark 8:The solution of Corollary 3 for vales dfin 0 @0

the interval0 < § < 1 allows to investigate the tradeoff Dy =0, Dy =0, Dp=1

betweeny (capacity of rejection of disturbances) afd |t is very important to notice that the problem of

(perturbation on the control matrix gain). determining the gains of the PI controller which drives the

Remark 9:Concerning practical implementation, dis-error vector: of system (15)-(16) to zero with a prescribed
cretization can be used to implement the continuous-tim@namic and, simultaneously, ensures the optimal rejec-
control strategy given here by means of digital platformsion of the disturbancey can be tackled as the problem

Moreover, the estimated state vector, provided by statsf computing the gaing;, and k; of the state feedback
observers, can be employed in the state feedback conte@yntrol law

law. [e
ue=1[ ki kp ] { } (17)
IV. EXAMPLE e

This section illustrates the application of the controfor system (15)-(16), withp = 0, such that the poles
design conditions provided previously to synthesize thef the closed-loop system belong to a prescribed region
gains of an optimal PI controller applied to the regulatior® (7: &, 0) and the}{, norm of the closed-loop system is
of velocity of an induction motor whose parameters ar&linimized. Theorem 1 is precisely a design tool which
given in [10, Chapter 3]. The closed-loop control Syste,ﬁ,olves this problem. Using the parameters for the induc-
is given in Figure 2, where is a constant reference tion motor from [10, Chapter 3], one hag = 0.1 and

__ _ _input, e is the regulation errory,. is the output of the bo = 100, which define the matricesl, B,, B.., C,
PI controller,w is an energy bounded disturbance inputPw and Dy, for system (15)-(16). The parameters for
u is the control input which drives the plant apds the the regionS(r,«, ¢) are chosen as = 200, o = 20 and
plant controlled output (velocity of the induction motor).? = 7/12. In this case, the Theorem 1 provides as solution
The transfer functions of the controller and of the plant K — [ ki K, ] _ [ 40.6517 2.1957 } (18)

lw and
220t [0 G | e
W The eigenvalues oft + B,, K (i.e. closed-loop poles) are
given by —20.3999 and—199.2744, thus belonging to the

regionS(r, a, 0).

It is worth to mention that the control gains (18) were
obtained solving Theorem 1 using the LMI Control Tool-
are given, respectively, by box from Matlab running in a notebook withla66 GH =z
Core Duo processor and with GB of RAM, spending
ﬁ , Gyls) = bo (14) a computational time 06.14 seconds, which shows the
5 §+ ao rapid convergence of the design tool provided here to
where k, and k; are real parameters to be determineghe global optimal controller, without using any complex
(gains of the controller) and, andb, are the parameters heuristic or exhaustive computational procedure to search
of the plant. the control gains.

Observe that the transfer function from the reference To illustrate the good quality of the results, some
p to the outputy, represented byx,,(s), is such that dynamic simulation of the closed-loop system are carried
G,,(0) = 1, thus ensuring zero steady state error t@ut. For instance, the response of the closed-loop system
any constant reference input. Moreover, definiig =  with w = 0 and with a constant reference given equal to
Jiy e(3)dB, one can write the control system from Figure 245 rad/s is given in Figure 3. Notice the fast transient
in the following state space representation response, provided by the closed-loop poles inside chosen
region, and no steady state error, as expected.

Figure 4 shows the closed-loop system response to a
y=Ce+ Dyw+ Dy uc+ Dyp (16) disturbancev, measured inVm, applied from3 <t <5

Fig. 2. Pl controller G.) applied to the velocity regulation of an
induction motor (Gp).

Ge(s) = kp +

€ = Ae + Byw + By, uc + Bpp (15)
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0.5424, thus corroborating the rejection of disturbance
provided by theH ., norm.
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Fig. 3. Transient response in the start of the system withgtlies of o4l
the PI controller given by (18)y and p are measured irad/s. 0 I B 3 7 s s 7 s o 0

. . . Fig. 5. Detail on the regulation error in the interval of apation of
seconds. Again, one can notice the fast transient response disturbance, for reference equals to zerds measured irrad/s

in the recover from the disturbance action, with a goo@dw is measured ilVm.

rejection of the disturbance provided by the design based

on the minimization of thé4.. norm. For a comparison, Finally, to have an evaluation of non-fragility of the
one has that the response using the proposed des@qptroller obtained with the design techniques given here,
condition for the PI controller, given in Figure 4, ex- Figure 6 shows the tradeoff between the perturbation on
hibits faster transients, with smaller deviations from théhe control gainsg, and the value of thé{.. guaranteed
reference than those in the response provided by the 89St (upper bound on th#., norm) of the closed-loop

adaptive controller given in [10, Chapter 3. system provided by Corollary 3. The point marked with
50
455 = 11f
40 -
ot
351 B
0.91-
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081
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20} i 07F — -
|
55 R 06 :
|
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5| ] l
0.4 L ) L L
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0 L L | E— L L L L )
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Fig. 6. Tradeoff between the perturbatiénon the control gains and

Fig. 4. Response of the closed-loop system with PI contrgjieen  the value of theH .. guaranteed cost of the closed-loop system.
by (18) for an energy bounded disturbanoe measured inNm. y is

measured iwadys. on the curve of Figure 6 is obtained solving Corollary 3

for r = 200, « = 20, 0 = w/12 and¢é = .1 (i.e. a
f)erturbation of+10% on the control gains). In this case,
Corollary 3 yields as solution the matrices

Figure 5 provides a detail on the regulation error for th
simulation of the closed-loop system with Pl controlle
given by (18) with reference = 0 and for the same
energy bounded disturbance used in the simulation from 0.0256  —0.8308

Figure 4, which leads tde||2/|lw]l2 = 0.1272 < v = W= —0.8308 84.0773
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and
7 = [ —0.7290 137.8418 }

allowing to obtain the set of control gains
K={KecR"™ :K=(6,(1-08)+02(1+8)ZW~*

(o1(1 —0) + 02(140)) [ 36.3841 1.9990 | ,
ci€Ry ,1=1,2,01+02=1, 6:0.1} (29)

which ensures the above described pole location and an
'H~ guaranteed cost given by= 0.6921. In other words, 0]
any of the gainsk’ = [k; k] in the setC ensures to

the closed-loop system the pole location in the region2]
S(r,a,0), with » = 200, a = 20, § = 7/12 and also
ensures thafe||2 < 0.6921|w||2, Yw € L3, w # 0. This
illustrates operation with guaranteed performance for the

closed-loop system under a perturbatidraffecting the (4
control gains.

(3]

V. CONCLUSION (5]

This paper provides a tool (Theorem 1) to synthesizgg)
the control matrix gain for state feedback control laws
applied to MIMO systems of arbitrary dimension. The 7
design tool is given by means of a convex optimization
problem whose solution yields the control matrix gain
which ensures the pole location inside a regiim, a, )
chosenra priori by the control designer and also optimizes
the rejection of energy bounded disturbances for thei9
closed-loop system. The choice of the parameters of the
region for pole location allows to impose bounds on thé&t0l
natural frequency, settling time and dumping factor for all
transient responses of the closed-loop system. Extensions
to deal with the investigation of tradeoffs between poléll]
location and rejection of disturbance, to handle decen-
tralized control and also to cope with non-fragile control
are provided (corollaries 1 to 3, respectively). The maif2]
advantage of the conditions given here is the formulation

(8]
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based on convex optimization with LMI constraints for

which there exists globally convergent algorithms that
provide the global optimal solution in a finite and previ-

ously estimated computational time. The efficiency of the
conditions provided in the paper is illustrated by means
of an example of application to the design of a global
optimal PI controller applied to the regulation of velocity

of an induction motor.
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